Assumptions:
Alternative assumptions:
TeX:
K_{\nu}\!\left(z\right) = -\frac{z}{2 \nu} \left(K_{\nu - 1}\!\left(z\right) - K_{\nu + 1}\!\left(z\right)\right) \nu \in \mathbb{Z} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \nu \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselK | Modified Bessel function of the second kind | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("9d98f8"), Formula(Equal(BesselK(nu, z), Neg(Mul(Div(z, Mul(2, nu)), Sub(BesselK(Sub(nu, 1), z), BesselK(Add(nu, 1), z)))))), Variables(nu, z), Assumptions(And(Element(nu, SetMinus(ZZ, Set(0))), Element(z, CC)), And(Element(nu, SetMinus(CC, Set(0))), Element(z, SetMinus(CC, Set(0))))))