Assumptions:
TeX:
K_{\nu}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{-1 / 2} {e}^{-z} U^{*}\!\left(\nu + \frac{1}{2}, 2 \nu + 1, 2 z\right) \nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselK | Modified Bessel function of the second kind | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
Exp | Exponential function | |
HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("7efe21"), Formula(Equal(BesselK(nu, z), Mul(Mul(Pow(Div(Mul(2, z), ConstPi), Neg(Div(1, 2))), Exp(Neg(z))), HypergeometricUStar(Add(nu, Div(1, 2)), Add(Mul(2, nu), 1), Mul(2, z))))), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))