Assumptions:
TeX:
K_{\nu}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{-1 / 2} {e}^{-z} U^{*}\!\left(\nu + \frac{1}{2}, 2 \nu + 1, 2 z\right)
\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselK | Modified Bessel function of the second kind | |
| Pow | Power | |
| ConstPi | The constant pi (3.14...) | |
| Exp | Exponential function | |
| HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("7efe21"),
Formula(Equal(BesselK(nu, z), Mul(Mul(Pow(Div(Mul(2, z), ConstPi), Neg(Div(1, 2))), Exp(Neg(z))), HypergeometricUStar(Add(nu, Div(1, 2)), Add(Mul(2, nu), 1), Mul(2, z))))),
Variables(nu, z),
Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))