Fungrim home page

Fungrim entry: 7efe21

Kν ⁣(z)=(2zπ)1/2ezU ⁣(ν+12,2ν+1,2z)K_{\nu}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{-1 / 2} {e}^{-z} U^{*}\!\left(\nu + \frac{1}{2}, 2 \nu + 1, 2 z\right)
Assumptions:νCandzC{0}\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
TeX:
K_{\nu}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{-1 / 2} {e}^{-z} U^{*}\!\left(\nu + \frac{1}{2}, 2 \nu + 1, 2 z\right)

\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
BesselKKν ⁣(z)K_{\nu}\!\left(z\right) Modified Bessel function of the second kind
Powab{a}^{b} Power
ConstPiπ\pi The constant pi (3.14...)
Expez{e}^{z} Exponential function
HypergeometricUStarU ⁣(a,b,z)U^{*}\!\left(a, b, z\right) Scaled Tricomi confluent hypergeometric function
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("7efe21"),
    Formula(Equal(BesselK(nu, z), Mul(Mul(Pow(Div(Mul(2, z), ConstPi), Neg(Div(1, 2))), Exp(Neg(z))), HypergeometricUStar(Add(nu, Div(1, 2)), Add(Mul(2, nu), 1), Mul(2, z))))),
    Variables(nu, z),
    Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC