The following table lists all conditions such that BesselKDerivative(nu, z, r) is defined in Fungrim.
|
Table data: (P,Q)
such that (P)⟹(Q)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselKDerivative | Kν(r)(z) | Differentiated modified Bessel function of the second kind |
RR | R | Real numbers |
OpenInterval | (a,b) | Open interval |
Infinity | ∞ | Positive infinity |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
Source code for this entry:
Entry(ID("ddfb97"), SymbolDefinition(BesselKDerivative, BesselKDerivative(nu, z, r), "Differentiated modified Bessel function of the second kind"), Description("The following table lists all conditions such that", SourceForm(BesselKDerivative(nu, z, r)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(And(Element(nu, RR), Element(z, OpenInterval(0, Infinity)), Element(r, ZZGreaterEqual(0))), Element(BesselKDerivative(nu, z, r), RR)), Tuple(And(Element(nu, SetMinus(CC, Set(0))), Element(z, CC), Element(r, ZZGreaterEqual(0))), Element(BesselKDerivative(nu, z, r), CC)))))