Assumptions:
TeX:
{z}^{2} K''_{\nu}\!\left(z\right) + z K'_{\nu}\!\left(z\right) - \left({z}^{2} + {\nu}^{2}\right) K_{\nu}\!\left(z\right) = 0 \nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
BesselKDerivative | Differentiated modified Bessel function of the second kind | |
BesselK | Modified Bessel function of the second kind | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("fd9add"), Formula(Equal(Sub(Add(Mul(Pow(z, 2), BesselKDerivative(nu, z, 2)), Mul(z, BesselKDerivative(nu, z, 1))), Mul(Add(Pow(z, 2), Pow(nu, 2)), BesselK(nu, z))), 0)), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))