Fungrim home page

Fungrim entry: fd9add

z2Kν ⁣(z)+zKν ⁣(z)(z2+ν2)Kν ⁣(z)=0{z}^{2} K''_{\nu}\!\left(z\right) + z K'_{\nu}\!\left(z\right) - \left({z}^{2} + {\nu}^{2}\right) K_{\nu}\!\left(z\right) = 0
Assumptions:νCandzC{0}\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
TeX:
{z}^{2} K''_{\nu}\!\left(z\right) + z K'_{\nu}\!\left(z\right) - \left({z}^{2} + {\nu}^{2}\right) K_{\nu}\!\left(z\right) = 0

\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
BesselKDerivativeKν(r) ⁣(z)K^{(r)}_{\nu}\!\left(z\right) Differentiated modified Bessel function of the second kind
BesselKKν ⁣(z)K_{\nu}\!\left(z\right) Modified Bessel function of the second kind
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("fd9add"),
    Formula(Equal(Sub(Add(Mul(Pow(z, 2), BesselKDerivative(nu, z, 2)), Mul(z, BesselKDerivative(nu, z, 1))), Mul(Add(Pow(z, 2), Pow(nu, 2)), BesselK(nu, z))), 0)),
    Variables(nu, z),
    Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC