Assumptions:
TeX:
K'_{\nu}\!\left(z\right) = -\frac{K_{\nu - 1}\!\left(z\right) + K_{\nu + 1}\!\left(z\right)}{2} \nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselKDerivative | Differentiated modified Bessel function of the second kind | |
BesselK | Modified Bessel function of the second kind | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("a0ff0b"), Formula(Equal(BesselKDerivative(nu, z, 1), Neg(Div(Add(BesselK(Sub(nu, 1), z), BesselK(Add(nu, 1), z)), 2)))), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))