The following table lists all conditions such that BesselJ(nu, z) is defined in Fungrim.
|
Table data: (P,Q)
such that (P)⟹(Q)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Jν(z) | Bessel function of the first kind |
ZZ | Z | Integers |
RR | R | Real numbers |
OpenInterval | (a,b) | Open interval |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
ClosedOpenInterval | [a,b) | Closed-open interval |
Source code for this entry:
Entry(ID("b4165c"), SymbolDefinition(BesselJ, BesselJ(nu, z), "Bessel function of the first kind"), Description("The following table lists all conditions such that", SourceForm(BesselJ(nu, z)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(And(Element(nu, ZZ), Element(z, RR)), Element(BesselJ(nu, z), RR)), Tuple(And(Element(nu, RR), Element(z, OpenInterval(0, Infinity))), Element(BesselJ(nu, z), RR)), Tuple(And(Element(nu, ZZ), Element(z, CC)), Element(BesselJ(nu, z), CC)), Tuple(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0)))), Element(BesselJ(nu, z), CC)), Tuple(And(Element(nu, ClosedOpenInterval(0, Infinity)), Element(z, CC)), Element(BesselJ(nu, z), CC)))))