Assumptions:
TeX:
\,{}_0{\textbf F}_1\!\left(a, z\right) = {\left(-z\right)}^{\left( 1 - a \right) / 2} J_{a - 1}\!\left(2 \sqrt{-z}\right) a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1Regularized | Regularized confluent hypergeometric limit function | |
Pow | Power | |
BesselJ | Bessel function of the first kind | |
Sqrt | Principal square root | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("325a0e"), Formula(Equal(Hypergeometric0F1Regularized(a, z), Mul(Pow(Neg(z), Div(Sub(1, a), 2)), BesselJ(Sub(a, 1), Mul(2, Sqrt(Neg(z))))))), Variables(a, z), Assumptions(And(Element(a, CC), Element(z, CC), Unequal(z, 0))))