Assumptions:
TeX:
\,{}_0{\textbf F}_1\!\left(a, z\right) = {\left(-z\right)}^{\left( 1 - a \right) / 2} J_{a - 1}\!\left(2 \sqrt{-z}\right)
a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \ne 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Hypergeometric0F1Regularized | Regularized confluent hypergeometric limit function | |
| Pow | Power | |
| BesselJ | Bessel function of the first kind | |
| Sqrt | Principal square root | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("325a0e"),
Formula(Equal(Hypergeometric0F1Regularized(a, z), Mul(Pow(Neg(z), Div(Sub(1, a), 2)), BesselJ(Sub(a, 1), Mul(2, Sqrt(Neg(z))))))),
Variables(a, z),
Assumptions(And(Element(a, CC), Element(z, CC), Unequal(z, 0))))