Assumptions:
TeX:
H^{(2)}_{\nu}\!\left(z\right) = J_{\nu}\!\left(z\right) - i Y_{\nu}\!\left(z\right)
\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HankelH2 | Hankel function of the second kind | |
| BesselJ | Bessel function of the first kind | |
| ConstI | Imaginary unit | |
| BesselY | Bessel function of the second kind | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("1dce21"),
Formula(Equal(HankelH2(nu, z), Sub(BesselJ(nu, z), Mul(ConstI, BesselY(nu, z))))),
Variables(nu, z),
Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))