Assumptions:
TeX:
J_{\nu}\!\left(z\right) = \frac{1}{\pi} \int_{0}^{\pi} \cos\!\left(\nu t - z \sin\!\left(t\right)\right) \, dt - \frac{\sin\!\left(\pi \nu\right)}{\pi} \int_{0}^{\infty} \exp\!\left(-z \sinh\!\left(t\right) - \nu t\right) \, dt \nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(z\right) \gt 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
ConstPi | The constant pi (3.14...) | |
Sin | Sine | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("cac83e"), Formula(Equal(BesselJ(nu, z), Sub(Mul(Div(1, ConstPi), Integral(Cos(Sub(Mul(nu, t), Mul(z, Sin(t)))), Tuple(t, 0, ConstPi))), Mul(Div(Sin(Mul(ConstPi, nu)), ConstPi), Integral(Exp(Sub(Neg(Mul(z, Sinh(t))), Mul(nu, t))), Tuple(t, 0, Infinity)))))), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, CC), Greater(Re(z), 0))))