Assumptions:
TeX:
Y_{\nu}\!\left(z\right) = \frac{\cos\!\left(\pi \nu\right) J_{\nu}\!\left(z\right) - J_{-\nu}\!\left(z\right)}{\sin\!\left(\pi \nu\right)}
\nu \in \mathbb{C} \setminus \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselY | Bessel function of the second kind | |
| ConstPi | The constant pi (3.14...) | |
| BesselJ | Bessel function of the first kind | |
| Sin | Sine | |
| CC | Complex numbers | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("2a4195"),
Formula(Equal(BesselY(nu, z), Div(Sub(Mul(Cos(Mul(ConstPi, nu)), BesselJ(nu, z)), BesselJ(Neg(nu), z)), Sin(Mul(ConstPi, nu))))),
Variables(nu, z),
Assumptions(And(Element(nu, SetMinus(CC, ZZ)), Element(z, SetMinus(CC, Set(0))))))