Fungrim home page

Fungrim entry: e72e96

J2/3 ⁣(z)=12ω2(3Ai ⁣(ω2)+3Bi ⁣(w2))   where ω=(3z2)1/3J_{2 / 3}\!\left(z\right) = \frac{1}{2 {\omega}^{2}} \left(3 \operatorname{Ai}'\!\left(-{\omega}^{2}\right) + \sqrt{3} \operatorname{Bi}'\!\left(-{w}^{2}\right)\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}
Assumptions:zC{0}z \in \mathbb{C} \setminus \left\{0\right\}
TeX:
J_{2 / 3}\!\left(z\right) = \frac{1}{2 {\omega}^{2}} \left(3 \operatorname{Ai}'\!\left(-{\omega}^{2}\right) + \sqrt{3} \operatorname{Bi}'\!\left(-{w}^{2}\right)\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}

z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
BesselJJν ⁣(z)J_{\nu}\!\left(z\right) Bessel function of the first kind
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("e72e96"),
    Formula(Equal(BesselJ(Div(2, 3), z), Where(Mul(Div(1, Mul(2, Pow(omega, 2))), Add(Mul(3, AiryAiPrime(Neg(Pow(omega, 2)))), Mul(Sqrt(3), AiryBiPrime(Neg(Pow(w, 2)))))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))),
    Variables(z),
    Assumptions(Element(z, SetMinus(CC, Set(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC