Assumptions:
TeX:
J_{2 / 3}\!\left(z\right) = \frac{1}{2 {\omega}^{2}} \left(3 \operatorname{Ai}'\!\left(-{\omega}^{2}\right) + \sqrt{3} \operatorname{Bi}'\!\left(-{w}^{2}\right)\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3} z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
Pow | Power | |
Sqrt | Principal square root | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("e72e96"), Formula(Equal(BesselJ(Div(2, 3), z), Where(Mul(Div(1, Mul(2, Pow(omega, 2))), Add(Mul(3, AiryAiPrime(Neg(Pow(omega, 2)))), Mul(Sqrt(3), AiryBiPrime(Neg(Pow(w, 2)))))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))), Variables(z), Assumptions(Element(z, SetMinus(CC, Set(0)))))