J−1/2(z)=(π2z)1/2zcos(z)
Assumptions:z∈C∖{0}
TeX:
J_{-1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\cos\!\left(z\right)}{z}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselJ | Jν(z)
| Bessel function of the first kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("621a9b"),
Formula(Equal(BesselJ(Neg(Div(1, 2)), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Div(Cos(z), z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
J1/2(z)=(π2z)1/2zsin(z)
Assumptions:z∈C∖{0}
TeX:
J_{1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\sin\!\left(z\right)}{z}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselJ | Jν(z)
| Bessel function of the first kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
Sin | sin(z)
| Sine |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("121b21"),
Formula(Equal(BesselJ(Div(1, 2), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Div(Sin(z), z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
J3/2(z)=(π2z)1/2(z2sin(z)−zcos(z))
Assumptions:z∈C∖{0}
TeX:
J_{3 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \left(\frac{\sin\!\left(z\right)}{{z}^{2}} - \frac{\cos\!\left(z\right)}{z}\right)
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselJ | Jν(z)
| Bessel function of the first kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
Sin | sin(z)
| Sine |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("a2a294"),
Formula(Equal(BesselJ(Div(3, 2), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Sub(Div(Sin(z), Pow(z, 2)), Div(Cos(z), z))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
Y−1/2(z)=(π2z)1/2zsin(z)
Assumptions:z∈C∖{0}
TeX:
Y_{-1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\sin\!\left(z\right)}{z}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselY | Yν(z)
| Bessel function of the second kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
Sin | sin(z)
| Sine |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("5679f2"),
Formula(Equal(BesselY(Neg(Div(1, 2)), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Div(Sin(z), z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
Y1/2(z)=−(π2z)1/2zcos(z)
Assumptions:z∈C∖{0}
TeX:
Y_{1 / 2}\!\left(z\right) = -{\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\cos\!\left(z\right)}{z}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselY | Yν(z)
| Bessel function of the second kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("4dfd41"),
Formula(Equal(BesselY(Div(1, 2), z), Neg(Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Div(Cos(z), z))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
Y3/2(z)=−(π2z)1/2(z2cos(z)+zsin(z))
Assumptions:z∈C∖{0}
TeX:
Y_{3 / 2}\!\left(z\right) = -{\left(\frac{2 z}{\pi}\right)}^{1 / 2} \left(\frac{\cos\!\left(z\right)}{{z}^{2}} + \frac{\sin\!\left(z\right)}{z}\right)
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselY | Yν(z)
| Bessel function of the second kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
Sin | sin(z)
| Sine |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("8472cc"),
Formula(Equal(BesselY(Div(3, 2), z), Neg(Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Add(Div(Cos(z), Pow(z, 2)), Div(Sin(z), z)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
I−1/2(z)=(π2z)1/2zcosh(z)
Assumptions:z∈C∖{0}
TeX:
I_{-1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\cosh\!\left(z\right)}{z}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselI | Iν(z)
| Modified Bessel function of the first kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("5d9c43"),
Formula(Equal(BesselI(Neg(Div(1, 2)), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Div(Cosh(z), z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
I1/2(z)=(π2z)1/2zsinh(z)
Assumptions:z∈C∖{0}
TeX:
I_{1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\sinh\!\left(z\right)}{z}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselI | Iν(z)
| Modified Bessel function of the first kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("a59981"),
Formula(Equal(BesselI(Div(1, 2), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Div(Sinh(z), z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
I3/2(z)=(π2z)1/2(zcosh(z)−z2sinh(z))
Assumptions:z∈C∖{0}
TeX:
I_{3 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \left(\frac{\cosh\!\left(z\right)}{z} - \frac{\sinh\!\left(z\right)}{{z}^{2}}\right)
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselI | Iν(z)
| Modified Bessel function of the first kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("65647f"),
Formula(Equal(BesselI(Div(3, 2), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Sub(Div(Cosh(z), z), Div(Sinh(z), Pow(z, 2)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
K−1/2(z)=(2πz)1/2ze−z
Assumptions:z∈C∖{0}
TeX:
K_{-1 / 2}\!\left(z\right) = {\left(\frac{\pi z}{2}\right)}^{1 / 2} \frac{{e}^{-z}}{z}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselK | Kν(z)
| Modified Bessel function of the second kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
Exp | ez
| Exponential function |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("7ac286"),
Formula(Equal(BesselK(Neg(Div(1, 2)), z), Mul(Pow(Div(Mul(ConstPi, z), 2), Div(1, 2)), Div(Exp(Neg(z)), z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
K1/2(z)=(2πz)1/2ze−z
Assumptions:z∈C∖{0}
TeX:
K_{1 / 2}\!\left(z\right) = {\left(\frac{\pi z}{2}\right)}^{1 / 2} \frac{{e}^{-z}}{z}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselK | Kν(z)
| Modified Bessel function of the second kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
Exp | ez
| Exponential function |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("d1f5c5"),
Formula(Equal(BesselK(Div(1, 2), z), Mul(Pow(Div(Mul(ConstPi, z), 2), Div(1, 2)), Div(Exp(Neg(z)), z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
K3/2(z)=(2πz)1/2e−z(z1+z21)
Assumptions:z∈C∖{0}
TeX:
K_{3 / 2}\!\left(z\right) = {\left(\frac{\pi z}{2}\right)}^{1 / 2} {e}^{-z} \left(\frac{1}{z} + \frac{1}{{z}^{2}}\right)
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselK | Kν(z)
| Modified Bessel function of the second kind |
Pow | ab
| Power |
ConstPi | π
| The constant pi (3.14...) |
Exp | ez
| Exponential function |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("0c09cc"),
Formula(Equal(BesselK(Div(3, 2), z), Mul(Pow(Div(Mul(ConstPi, z), 2), Div(1, 2)), Mul(Exp(Neg(z)), Add(Div(1, z), Div(1, Pow(z, 2))))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
J−1/3(z)=2ω1(3Ai(−ω2)+3Bi(−ω2)) where ω=(23z)1/3
Assumptions:z∈C∖{0}
TeX:
J_{-1 / 3}\!\left(z\right) = \frac{1}{2 \omega} \left(3 \operatorname{Ai}\!\left(-{\omega}^{2}\right) + \sqrt{3} \operatorname{Bi}\!\left(-{\omega}^{2}\right)\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselJ | Jν(z)
| Bessel function of the first kind |
AiryAi | Ai(z)
| Airy function of the first kind |
Pow | ab
| Power |
Sqrt | z
| Principal square root |
AiryBi | Bi(z)
| Airy function of the second kind |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("685892"),
Formula(Equal(BesselJ(Neg(Div(1, 3)), z), Where(Mul(Div(1, Mul(2, omega)), Add(Mul(3, AiryAi(Neg(Pow(omega, 2)))), Mul(Sqrt(3), AiryBi(Neg(Pow(omega, 2)))))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
J1/3(z)=2ω1(3Ai(−ω2)−3Bi(−ω2)) where ω=(23z)1/3
Assumptions:z∈C∖{0}
TeX:
J_{1 / 3}\!\left(z\right) = \frac{1}{2 \omega} \left(3 \operatorname{Ai}\!\left(-{\omega}^{2}\right) - \sqrt{3} \operatorname{Bi}\!\left(-{\omega}^{2}\right)\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselJ | Jν(z)
| Bessel function of the first kind |
AiryAi | Ai(z)
| Airy function of the first kind |
Pow | ab
| Power |
Sqrt | z
| Principal square root |
AiryBi | Bi(z)
| Airy function of the second kind |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("d39c46"),
Formula(Equal(BesselJ(Div(1, 3), z), Where(Mul(Div(1, Mul(2, omega)), Sub(Mul(3, AiryAi(Neg(Pow(omega, 2)))), Mul(Sqrt(3), AiryBi(Neg(Pow(omega, 2)))))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
J2/3(z)=2ω21(3Ai′(−ω2)+3Bi′(−w2)) where ω=(23z)1/3
Assumptions:z∈C∖{0}
TeX:
J_{2 / 3}\!\left(z\right) = \frac{1}{2 {\omega}^{2}} \left(3 \operatorname{Ai}'\!\left(-{\omega}^{2}\right) + \sqrt{3} \operatorname{Bi}'\!\left(-{w}^{2}\right)\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselJ | Jν(z)
| Bessel function of the first kind |
Pow | ab
| Power |
Sqrt | z
| Principal square root |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("e72e96"),
Formula(Equal(BesselJ(Div(2, 3), z), Where(Mul(Div(1, Mul(2, Pow(omega, 2))), Add(Mul(3, AiryAiPrime(Neg(Pow(omega, 2)))), Mul(Sqrt(3), AiryBiPrime(Neg(Pow(w, 2)))))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
K−1/3(z)=ω3πAi(ω2) where ω=(23z)1/3
Assumptions:z∈C∖{0}
TeX:
K_{-1 / 3}\!\left(z\right) = \frac{\sqrt{3} \pi}{\omega} \operatorname{Ai}\!\left({\omega}^{2}\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselK | Kν(z)
| Modified Bessel function of the second kind |
Sqrt | z
| Principal square root |
ConstPi | π
| The constant pi (3.14...) |
AiryAi | Ai(z)
| Airy function of the first kind |
Pow | ab
| Power |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("fda595"),
Formula(Equal(BesselK(Neg(Div(1, 3)), z), Where(Mul(Div(Mul(Sqrt(3), ConstPi), omega), AiryAi(Pow(omega, 2))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
K1/3(z)=ω3πAi(ω2) where ω=(23z)1/3
Assumptions:z∈C∖{0}
TeX:
K_{1 / 3}\!\left(z\right) = \frac{\sqrt{3} \pi}{\omega} \operatorname{Ai}\!\left({\omega}^{2}\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselK | Kν(z)
| Modified Bessel function of the second kind |
Sqrt | z
| Principal square root |
ConstPi | π
| The constant pi (3.14...) |
AiryAi | Ai(z)
| Airy function of the first kind |
Pow | ab
| Power |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("49d754"),
Formula(Equal(BesselK(Div(1, 3), z), Where(Mul(Div(Mul(Sqrt(3), ConstPi), omega), AiryAi(Pow(omega, 2))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
K2/3(z)=−ω23πAi′(ω2) where ω=(23z)1/3
Assumptions:z∈C∖{0}
TeX:
K_{2 / 3}\!\left(z\right) = -\frac{\sqrt{3} \pi}{{\omega}^{2}} \operatorname{Ai}'\!\left({\omega}^{2}\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}
z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselK | Kν(z)
| Modified Bessel function of the second kind |
Sqrt | z
| Principal square root |
ConstPi | π
| The constant pi (3.14...) |
Pow | ab
| Power |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("c362e8"),
Formula(Equal(BesselK(Div(2, 3), z), Where(Neg(Mul(Div(Mul(Sqrt(3), ConstPi), Pow(omega, 2)), AiryAiPrime(Pow(omega, 2)))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))