Assumptions:
TeX:
K_{2 / 3}\!\left(z\right) = -\frac{\sqrt{3} \pi}{{\omega}^{2}} \operatorname{Ai}'\!\left({\omega}^{2}\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3} z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselK | Modified Bessel function of the second kind | |
Sqrt | Principal square root | |
ConstPi | The constant pi (3.14...) | |
Pow | Power | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("c362e8"), Formula(Equal(BesselK(Div(2, 3), z), Where(Neg(Mul(Div(Mul(Sqrt(3), ConstPi), Pow(omega, 2)), AiryAiPrime(Pow(omega, 2)))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))), Variables(z), Assumptions(Element(z, SetMinus(CC, Set(0)))))