Assumptions:
TeX:
K_{-1 / 2}\!\left(z\right) = {\left(\frac{\pi z}{2}\right)}^{1 / 2} \frac{{e}^{-z}}{z} z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselK | Modified Bessel function of the second kind | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
Exp | Exponential function | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("7ac286"), Formula(Equal(BesselK(Neg(Div(1, 2)), z), Mul(Pow(Div(Mul(ConstPi, z), 2), Div(1, 2)), Div(Exp(Neg(z)), z)))), Variables(z), Assumptions(Element(z, SetMinus(CC, Set(0)))))