Table of contents: Definitions - Illustrations - Differential equation - Special values - Higher derivatives - Hypergeometric representations - Analytic properties
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
Entry(ID("9ac289"), SymbolDefinition(AiryAi, AiryAi(z), "Airy function of the first kind"))
Fungrim symbol | Notation | Short description |
---|---|---|
AiryBi | Bi(z) | Airy function of the second kind |
Entry(ID("5a9d3f"), SymbolDefinition(AiryBi, AiryBi(z), "Airy function of the second kind"))
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
ClosedInterval | [a,b] | Closed interval |
ConstI | i | Imaginary unit |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Abs | ∣z∣ | Absolute value |
Entry(ID("b4c968"), Image(Description("X-ray of", AiryAi(z), "on", Element(z, Add(ClosedInterval(-6, 6), Mul(ClosedInterval(-6, 6), ConstI)))), ImageSource("xray_airy_ai")), Description("An X-ray plot illustrates the geometry of a complex analytic function", f(z), ".", "Thick black curves show where", Equal(Im(f(z)), 0), "(the function is pure real).", "Thick red curves show where", Equal(Re(f(z)), 0), "(the function is pure imaginary).", "Points where black and red curves intersect are zeros or poles.", "Magnitude level curves", Equal(Abs(f(z)), C), "are rendered as thin gray curves, with brighter shades corresponding to larger", C, ".", "Blue lines show branch cuts.", "The value of the function is continuous with the branch cut on the side indicated with a solid line, and discontinuous on the side indicated with a dashed line.", "Yellow is used to highlight important regions."))
Fungrim symbol | Notation | Short description |
---|---|---|
AiryBi | Bi(z) | Airy function of the second kind |
ClosedInterval | [a,b] | Closed interval |
ConstI | i | Imaginary unit |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Abs | ∣z∣ | Absolute value |
Entry(ID("fa65f3"), Image(Description("X-ray of", AiryBi(z), "on", Element(z, Add(ClosedInterval(-6, 6), Mul(ClosedInterval(-6, 6), ConstI)))), ImageSource("xray_airy_bi")), Description("An X-ray plot illustrates the geometry of a complex analytic function", f(z), ".", "Thick black curves show where", Equal(Im(f(z)), 0), "(the function is pure real).", "Thick red curves show where", Equal(Re(f(z)), 0), "(the function is pure imaginary).", "Points where black and red curves intersect are zeros or poles.", "Magnitude level curves", Equal(Abs(f(z)), C), "are rendered as thin gray curves, with brighter shades corresponding to larger", C, ".", "Blue lines show branch cuts.", "The value of the function is continuous with the branch cut on the side indicated with a solid line, and discontinuous on the side indicated with a dashed line.", "Yellow is used to highlight important regions."))
y''(z) - z y\!\left(z\right) = 0\; \text{ where } y\!\left(z\right) = C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right) z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Derivative | dzdf(z) | Derivative |
AiryAi | Ai(z) | Airy function of the first kind |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
Entry(ID("51b241"), Formula(Where(Equal(Sub(Derivative(y(z), Tuple(z, z, 2)), Mul(z, y(z))), 0), Equal(y(z), Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z)))))), Variables(z, C, D), Assumptions(And(Element(z, CC), Element(C, CC), Element(D, CC))))
\operatorname{Ai}\!\left(z\right) \operatorname{Bi}'\!\left(z\right) - \operatorname{Ai}'\!\left(z\right) \operatorname{Bi}\!\left(z\right) = \frac{1}{\pi}
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
AiryBi | Bi(z) | Airy function of the second kind |
ConstPi | π | The constant pi (3.14...) |
CC | C | Complex numbers |
Entry(ID("de9800"), Formula(Equal(Sub(Mul(AiryAi(z), AiryBiPrime(z)), Mul(AiryAiPrime(z), AiryBi(z))), Div(1, ConstPi))), Variables(z), Element(z, CC))
\operatorname{Ai}\!\left(0\right) = \frac{1}{{3}^{2 / 3} \Gamma\!\left(\frac{2}{3}\right)} \in \left[0.355028053887817239260063186004 \pm 1.84 \cdot 10^{-31}\right]
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
Pow | ab | Power |
GammaFunction | Γ(z) | Gamma function |
Entry(ID("693cfe"), Formula(EqualAndElement(AiryAi(0), Div(1, Mul(Pow(3, Div(2, 3)), GammaFunction(Div(2, 3)))), RealBall(Decimal("0.355028053887817239260063186004"), Decimal("1.84e-31")))))
\operatorname{Ai}'\!\left(0\right) = -\frac{1}{{3}^{1 / 3} \Gamma\!\left(\frac{1}{3}\right)} \in \left[-0.258819403792806798405183560189 \pm 2.04 \cdot 10^{-31}\right]
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
GammaFunction | Γ(z) | Gamma function |
Entry(ID("807917"), Formula(EqualAndElement(AiryAiPrime(0), Neg(Div(1, Mul(Pow(3, Div(1, 3)), GammaFunction(Div(1, 3))))), RealBall(Decimal("-0.258819403792806798405183560189"), Decimal("2.04e-31")))))
\operatorname{Bi}\!\left(0\right) = \frac{1}{{3}^{1 / 6} \Gamma\!\left(\frac{2}{3}\right)} \in \left[0.614926627446000735150922369094 \pm 3.87 \cdot 10^{-31}\right]
Fungrim symbol | Notation | Short description |
---|---|---|
AiryBi | Bi(z) | Airy function of the second kind |
Pow | ab | Power |
GammaFunction | Γ(z) | Gamma function |
Entry(ID("9a8d4d"), Formula(EqualAndElement(AiryBi(0), Div(1, Mul(Pow(3, Div(1, 6)), GammaFunction(Div(2, 3)))), RealBall(Decimal("0.614926627446000735150922369094"), Decimal("3.87e-31")))))
\operatorname{Bi}'\!\left(0\right) = \frac{{3}^{1 / 6}}{\Gamma\!\left(\frac{1}{3}\right)} \in \left[0.448288357353826357914823710399 \pm 1.72 \cdot 10^{-31}\right]
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
GammaFunction | Γ(z) | Gamma function |
Entry(ID("fba07c"), Formula(EqualAndElement(AiryBiPrime(0), Div(Pow(3, Div(1, 6)), GammaFunction(Div(1, 3))), RealBall(Decimal("0.448288357353826357914823710399"), Decimal("1.72e-31")))))
\operatorname{Ai}''(z) = z \operatorname{Ai}\!\left(z\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Derivative | dzdf(z) | Derivative |
AiryAi | Ai(z) | Airy function of the first kind |
CC | C | Complex numbers |
Entry(ID("b2e9d0"), Formula(Equal(Derivative(AiryAi(z), Tuple(z, z, 2)), Mul(z, AiryAi(z)))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{Bi}''(z) = z \operatorname{Bi}\!\left(z\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Derivative | dzdf(z) | Derivative |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
Entry(ID("70ec9f"), Formula(Equal(Derivative(AiryBi(z), Tuple(z, z, 2)), Mul(z, AiryBi(z)))), Variables(z), Assumptions(Element(z, CC)))
{y}^{(n)}(z) = z {y}^{(n - 2)}(z) + \left(n - 2\right) {y}^{(n - 3)}(z)\; \text{ where } y\!\left(z\right) = C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right) z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 3} \,\mathbin{\operatorname{and}}\, C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Derivative | dzdf(z) | Derivative |
AiryAi | Ai(z) | Airy function of the first kind |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("eadca2"), Formula(Where(Equal(Derivative(y(z), Tuple(z, z, n)), Add(Mul(z, Derivative(y(z), Tuple(z, z, Sub(n, 2)))), Mul(Sub(n, 2), Derivative(y(z), Tuple(z, z, Sub(n, 3)))))), Equal(y(z), Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z)))))), Variables(n, z, C, D), Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(3)), Element(C, CC), Element(D, CC))))
\operatorname{Ai}\!\left(z\right) = \operatorname{Ai}\!\left(0\right) \,{}_0F_1\!\left(\frac{2}{3}, \frac{{z}^{3}}{9}\right) + z \operatorname{Ai}'\!\left(0\right) \,{}_0F_1\!\left(\frac{4}{3}, \frac{{z}^{3}}{9}\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
Hypergeometric0F1 | 0F1(a,z) | Confluent hypergeometric limit function |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("01bbb6"), Formula(Equal(AiryAi(z), Add(Mul(AiryAi(0), Hypergeometric0F1(Div(2, 3), Div(Pow(z, 3), 9))), Mul(Mul(z, AiryAiPrime(0)), Hypergeometric0F1(Div(4, 3), Div(Pow(z, 3), 9)))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{Bi}\!\left(z\right) = \operatorname{Bi}\!\left(0\right) \,{}_0F_1\!\left(\frac{2}{3}, \frac{{z}^{3}}{9}\right) + z \operatorname{Bi}'\!\left(0\right) \,{}_0F_1\!\left(\frac{4}{3}, \frac{{z}^{3}}{9}\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
AiryBi | Bi(z) | Airy function of the second kind |
Hypergeometric0F1 | 0F1(a,z) | Confluent hypergeometric limit function |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("bd319e"), Formula(Equal(AiryBi(z), Add(Mul(AiryBi(0), Hypergeometric0F1(Div(2, 3), Div(Pow(z, 3), 9))), Mul(Mul(z, AiryBiPrime(0)), Hypergeometric0F1(Div(4, 3), Div(Pow(z, 3), 9)))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{Ai}'\!\left(z\right) = \operatorname{Ai}'\!\left(0\right) \,{}_0F_1\!\left(\frac{1}{3}, \frac{{z}^{3}}{9}\right) + \frac{{z}^{2}}{2} \operatorname{Ai}\!\left(0\right) \,{}_0F_1\!\left(\frac{5}{3}, \frac{{z}^{3}}{9}\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1 | 0F1(a,z) | Confluent hypergeometric limit function |
Pow | ab | Power |
AiryAi | Ai(z) | Airy function of the first kind |
CC | C | Complex numbers |
Entry(ID("20e530"), Formula(Equal(AiryAiPrime(z), Add(Mul(AiryAiPrime(0), Hypergeometric0F1(Div(1, 3), Div(Pow(z, 3), 9))), Mul(Mul(Div(Pow(z, 2), 2), AiryAi(0)), Hypergeometric0F1(Div(5, 3), Div(Pow(z, 3), 9)))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{Bi}'\!\left(z\right) = \operatorname{Bi}'\!\left(0\right) \,{}_0F_1\!\left(\frac{1}{3}, \frac{{z}^{3}}{9}\right) + \frac{{z}^{2}}{2} \operatorname{Bi}\!\left(0\right) \,{}_0F_1\!\left(\frac{5}{3}, \frac{{z}^{3}}{9}\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1 | 0F1(a,z) | Confluent hypergeometric limit function |
Pow | ab | Power |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
Entry(ID("4d65e5"), Formula(Equal(AiryBiPrime(z), Add(Mul(AiryBiPrime(0), Hypergeometric0F1(Div(1, 3), Div(Pow(z, 3), 9))), Mul(Mul(Div(Pow(z, 2), 2), AiryBi(0)), Hypergeometric0F1(Div(5, 3), Div(Pow(z, 3), 9)))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{HolomorphicDomain}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \mathbb{C} C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{not} \left(C = 0 \,\mathbin{\operatorname{and}}\, D = 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
UnsignedInfinity | ∞~ | Unsigned infinity |
Entry(ID("def37e"), Formula(Equal(HolomorphicDomain(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), z, Union(CC, Set(UnsignedInfinity))), CC)), Variables(C, D), Assumptions(And(Element(C, CC), Element(D, CC), Not(And(Equal(C, 0), Equal(D, 0))))))
\operatorname{Poles}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\} C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{not} \left(C = 0 \,\mathbin{\operatorname{and}}\, D = 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
UnsignedInfinity | ∞~ | Unsigned infinity |
Entry(ID("1f0577"), Formula(Equal(Poles(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), z, Union(CC, Set(UnsignedInfinity))), Set())), Variables(C, D), Assumptions(And(Element(C, CC), Element(D, CC), Not(And(Equal(C, 0), Equal(D, 0))))))
\operatorname{EssentialSingularities}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{{\tilde \infty}\right\} C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{not} \left(C = 0 \,\mathbin{\operatorname{and}}\, D = 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
UnsignedInfinity | ∞~ | Unsigned infinity |
Entry(ID("90f31e"), Formula(Equal(EssentialSingularities(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), z, Union(CC, Set(UnsignedInfinity))), Set(UnsignedInfinity))), Variables(C, D), Assumptions(And(Element(C, CC), Element(D, CC), Not(And(Equal(C, 0), Equal(D, 0))))))
\operatorname{BranchPoints}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\} C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
UnsignedInfinity | ∞~ | Unsigned infinity |
Entry(ID("b88f65"), Formula(Equal(BranchPoints(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), z, Union(CC, Set(UnsignedInfinity))), Set())), Variables(C, D), Assumptions(And(Element(C, CC), Element(D, CC))))
\operatorname{BranchCuts}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C}\right) = \left\{\right\} C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
AiryBi | Bi(z) | Airy function of the second kind |
CC | C | Complex numbers |
Entry(ID("7194d4"), Formula(Equal(BranchCuts(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), z, CC), Set())), Variables(C, D), Assumptions(And(Element(C, CC), Element(D, CC))))
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \operatorname{Ai}\!\left(z\right) \subset \mathbb{R}
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Ai(z) | Airy function of the first kind |
CC | C | Complex numbers |
RR | R | Real numbers |
Entry(ID("d1f9d0"), Formula(Subset(Zeros(AiryAi(z), z, Element(z, CC)), RR)))
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \operatorname{Ai}'\!\left(z\right) \subset \mathbb{R}
Fungrim symbol | Notation | Short description |
---|---|---|
CC | C | Complex numbers |
RR | R | Real numbers |
Entry(ID("a2df77"), Formula(Subset(Zeros(AiryAiPrime(z), z, Element(z, CC)), RR)))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2019-06-18 07:49:59.356594 UTC