Assumptions:
TeX:
J_{1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\sin\!\left(z\right)}{z} z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
Sin | Sine | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("121b21"), Formula(Equal(BesselJ(Div(1, 2), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Div(Sin(z), z)))), Variables(z), Assumptions(Element(z, SetMinus(CC, Set(0)))))