Assumptions:
TeX:
I_{-1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\cosh\!\left(z\right)}{z}
z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselI | Modified Bessel function of the first kind | |
| Pow | Power | |
| ConstPi | The constant pi (3.14...) | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("5d9c43"),
Formula(Equal(BesselI(Neg(Div(1, 2)), z), Mul(Pow(Div(Mul(2, z), ConstPi), Div(1, 2)), Div(Cosh(z), z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))