Assumptions:
TeX:
J_{\nu}\!\left(z\right) = \frac{{z}^{\nu}}{{\left(2 \pi\right)}^{1 / 2}} \left({\left(i z\right)}^{-1 / 2 - \nu} {e}^{i z} U^{*}\!\left(\nu + \frac{1}{2}, 2 \nu + 1, -2 i z\right) + {\left(-i z\right)}^{-1 / 2 - \nu} {e}^{-i z} U^{*}\!\left(\nu + \frac{1}{2}, 2 \nu + 1, 2 i z\right)\right) \nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Exp | Exponential function | |
HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("32e162"), Formula(Equal(BesselJ(nu, z), Mul(Div(Pow(z, nu), Pow(Mul(2, ConstPi), Div(1, 2))), Add(Mul(Pow(Mul(ConstI, z), Sub(Neg(Div(1, 2)), nu)), Mul(Exp(Mul(ConstI, z)), HypergeometricUStar(Add(nu, Div(1, 2)), Add(Mul(2, nu), 1), Neg(Mul(Mul(2, ConstI), z))))), Mul(Pow(Neg(Mul(ConstI, z)), Sub(Neg(Div(1, 2)), nu)), Mul(Exp(Neg(Mul(ConstI, z))), HypergeometricUStar(Add(nu, Div(1, 2)), Add(Mul(2, nu), 1), Mul(Mul(2, ConstI), z)))))))), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))