Assumptions:
References:
- L. Landau. Monotonicity and bounds on Bessel functions. Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory. Vol. 4. Southwest Texas State Univ. San Marcos, TX, 2000. http://emis.ams.org/journals/EJDE/conf-proc/04/l1/landau.pdf
TeX:
\left|J_{\nu}\!\left(x\right)\right| \le 0.7858 {x}^{-1 / 3}
\nu \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, x \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| BesselJ | Bessel function of the first kind | |
| Pow | Power | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity | |
| OpenInterval | Open interval |
Source code for this entry:
Entry(ID("7f3485"),
Formula(LessEqual(Abs(BesselJ(nu, x)), Mul(Decimal("0.7858"), Pow(x, Neg(Div(1, 3)))))),
Variables(nu, x),
Assumptions(And(Element(nu, ClosedOpenInterval(0, Infinity)), Element(x, OpenInterval(0, Infinity)))),
References("L. Landau. Monotonicity and bounds on Bessel functions. Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory. Vol. 4. Southwest Texas State Univ. San Marcos, TX, 2000. http://emis.ams.org/journals/EJDE/conf-proc/04/l1/landau.pdf"))