Assumptions:
Alternative assumptions:
TeX:
J'_{\nu}\!\left(z\right) = \frac{J_{\nu - 1}\!\left(z\right) - J_{\nu + 1}\!\left(z\right)}{2}
\nu \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}
\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselJDerivative | Differentiated Bessel function of the first kind | |
| BesselJ | Bessel function of the first kind | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("5aceb9"),
Formula(Equal(BesselJDerivative(nu, z, 1), Div(Sub(BesselJ(Sub(nu, 1), z), BesselJ(Add(nu, 1), z)), 2))),
Variables(nu, z),
Assumptions(And(Element(nu, ZZ), Element(z, CC)), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))