Assumptions:
Alternative assumptions:
TeX:
{z}^{2} J''_{\nu}\!\left(z\right) + z J'_{\nu}\!\left(z\right) + \left({z}^{2} - {\nu}^{2}\right) J_{\nu}\!\left(z\right) = 0
\nu \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}
\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| BesselJDerivative | Differentiated Bessel function of the first kind | |
| BesselJ | Bessel function of the first kind | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("ad9caa"),
Formula(Equal(Add(Add(Mul(Pow(z, 2), BesselJDerivative(nu, z, 2)), Mul(z, BesselJDerivative(nu, z, 1))), Mul(Sub(Pow(z, 2), Pow(nu, 2)), BesselJ(nu, z))), 0)),
Variables(nu, z),
Assumptions(And(Element(nu, ZZ), Element(z, CC)), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))