Assumptions:
Alternative assumptions:
TeX:
Y_{\nu}\!\left(z\right) = \frac{z}{2 \nu} \left(Y_{\nu - 1}\!\left(z\right) + Y_{\nu + 1}\!\left(z\right)\right)
\nu \in \mathbb{Z} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}
\nu \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselY | Bessel function of the second kind | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("b6d600"),
Formula(Equal(BesselY(nu, z), Mul(Div(z, Mul(2, nu)), Add(BesselY(Sub(nu, 1), z), BesselY(Add(nu, 1), z))))),
Variables(nu, z),
Assumptions(And(Element(nu, SetMinus(ZZ, Set(0))), Element(z, CC)), And(Element(nu, SetMinus(CC, Set(0))), Element(z, SetMinus(CC, Set(0))))))