Assumptions:
TeX:
I_{\nu}\!\left(z\right) = \frac{1}{\pi} \int_{0}^{\pi} \exp\!\left(z \cos\!\left(t\right)\right) \cos\!\left(\nu t\right) \, dt - \frac{\sin\!\left(\pi \nu\right)}{\pi} \int_{0}^{\infty} \exp\!\left(-z \cosh\!\left(t\right) - \nu t\right) \, dt
\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(z\right) \gt 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselI | Modified Bessel function of the first kind | |
| ConstPi | The constant pi (3.14...) | |
| Exp | Exponential function | |
| Sin | Sine | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("7ae3ed"),
Formula(Equal(BesselI(nu, z), Sub(Mul(Div(1, ConstPi), Integral(Mul(Exp(Mul(z, Cos(t))), Cos(Mul(nu, t))), Tuple(t, 0, ConstPi))), Mul(Div(Sin(Mul(ConstPi, nu)), ConstPi), Integral(Exp(Sub(Neg(Mul(z, Cosh(t))), Mul(nu, t))), Tuple(t, 0, Infinity)))))),
Variables(nu, z),
Assumptions(And(Element(nu, CC), Element(z, CC), Greater(Re(z), 0))))