Fungrim home page

Fungrim entry: 8ac81d

Symbol: BesselI Iν ⁣(z)I_{\nu}\!\left(z\right) Modified Bessel function of the first kind
The following table lists all conditions such that BesselI(nu, z) is defined in Fungrim.
Domain Codomain
Numbers
νZandzR\nu \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{R} Iν ⁣(z)RI_{\nu}\!\left(z\right) \in \mathbb{R}
νRandz(0,)\nu \in \mathbb{R} \,\mathbin{\operatorname{and}}\, z \in \left(0, \infty\right) Iν ⁣(z)RI_{\nu}\!\left(z\right) \in \mathbb{R}
νZandzC\nu \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} Iν ⁣(z)CI_{\nu}\!\left(z\right) \in \mathbb{C}
νCandzC{0}\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\} Iν ⁣(z)CI_{\nu}\!\left(z\right) \in \mathbb{C}
Table data: (P,Q)\left(P, Q\right) such that (P)    (Q)\left(P\right) \implies \left(Q\right)
Definitions:
Fungrim symbol Notation Short description
BesselIIν ⁣(z)I_{\nu}\!\left(z\right) Modified Bessel function of the first kind
ZZZ\mathbb{Z} Integers
RRR\mathbb{R} Real numbers
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("8ac81d"),
    SymbolDefinition(BesselI, BesselI(nu, z), "Modified Bessel function of the first kind"),
    Description("The following table lists all conditions such that", SourceForm(BesselI(nu, z)), "is defined in Fungrim."),
    Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(And(Element(nu, ZZ), Element(z, RR)), Element(BesselI(nu, z), RR)), Tuple(And(Element(nu, RR), Element(z, OpenInterval(0, Infinity))), Element(BesselI(nu, z), RR)), Tuple(And(Element(nu, ZZ), Element(z, CC)), Element(BesselI(nu, z), CC)), Tuple(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0)))), Element(BesselI(nu, z), CC)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC