Assumptions:
TeX:
{z}^{2} Y''_{\nu}\!\left(z\right) + z Y'_{\nu}\!\left(z\right) + \left({z}^{2} - {\nu}^{2}\right) Y_{\nu}\!\left(z\right) = 0 \nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
BesselYDerivative | Differentiated Bessel function of the second kind | |
BesselY | Bessel function of the second kind | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("62f23c"), Formula(Equal(Add(Add(Mul(Pow(z, 2), BesselYDerivative(nu, z, 2)), Mul(z, BesselYDerivative(nu, z, 1))), Mul(Sub(Pow(z, 2), Pow(nu, 2)), BesselY(nu, z))), 0)), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))