Fungrim home page

Fungrim entry: c29d6f

Kν ⁣(z)=0exp ⁣(zcosh ⁣(t))cosh ⁣(νt)dtK_{\nu}\!\left(z\right) = \int_{0}^{\infty} \exp\!\left(-z \cosh\!\left(t\right)\right) \cosh\!\left(\nu t\right) \, dt
Assumptions:νCandzCandRe ⁣(z)>0\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(z\right) \gt 0
TeX:
K_{\nu}\!\left(z\right) = \int_{0}^{\infty} \exp\!\left(-z \cosh\!\left(t\right)\right) \cosh\!\left(\nu t\right) \, dt

\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(z\right) \gt 0
Definitions:
Fungrim symbol Notation Short description
BesselKKν ⁣(z)K_{\nu}\!\left(z\right) Modified Bessel function of the second kind
Expez{e}^{z} Exponential function
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
Source code for this entry:
Entry(ID("c29d6f"),
    Formula(Equal(BesselK(nu, z), Integral(Mul(Exp(Neg(Mul(z, Cosh(t)))), Cosh(Mul(nu, t))), Tuple(t, 0, Infinity)))),
    Variables(nu, z),
    Assumptions(And(Element(nu, CC), Element(z, CC), Greater(Re(z), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC