Assumptions:
TeX:
K_{\nu}\!\left(z\right) = \int_{0}^{\infty} \exp\!\left(-z \cosh\!\left(t\right)\right) \cosh\!\left(\nu t\right) \, dt \nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(z\right) \gt 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselK | Modified Bessel function of the second kind | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("c29d6f"), Formula(Equal(BesselK(nu, z), Integral(Mul(Exp(Neg(Mul(z, Cosh(t)))), Cosh(Mul(nu, t))), Tuple(t, 0, Infinity)))), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, CC), Greater(Re(z), 0))))