Assumptions:
TeX:
Y'_{\nu}\!\left(z\right) = \frac{Y_{\nu - 1}\!\left(z\right) - Y_{\nu + 1}\!\left(z\right)}{2} \nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselYDerivative | Differentiated Bessel function of the second kind | |
BesselY | Bessel function of the second kind | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("40aeb6"), Formula(Equal(BesselYDerivative(nu, z, 1), Div(Sub(BesselY(Sub(nu, 1), z), BesselY(Add(nu, 1), z)), 2))), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))