Assumptions:
TeX:
Y'_{\nu}\!\left(z\right) = \frac{Y_{\nu - 1}\!\left(z\right) - Y_{\nu + 1}\!\left(z\right)}{2}
\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselYDerivative | Differentiated Bessel function of the second kind | |
| BesselY | Bessel function of the second kind | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("40aeb6"),
Formula(Equal(BesselYDerivative(nu, z, 1), Div(Sub(BesselY(Sub(nu, 1), z), BesselY(Add(nu, 1), z)), 2))),
Variables(nu, z),
Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))