Fungrim home page

Fungrim entry: 58d91f

Iν ⁣(z)=Iν1 ⁣(z)+Iν+1 ⁣(z)2I'_{\nu}\!\left(z\right) = \frac{I_{\nu - 1}\!\left(z\right) + I_{\nu + 1}\!\left(z\right)}{2}
Assumptions:νZandzC\nu \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}
Alternative assumptions:νCandzC{0}\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
TeX:
I'_{\nu}\!\left(z\right) = \frac{I_{\nu - 1}\!\left(z\right) + I_{\nu + 1}\!\left(z\right)}{2}

\nu \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}

\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
BesselIDerivativeIν(r) ⁣(z)I^{(r)}_{\nu}\!\left(z\right) Differentiated modified Bessel function of the first kind
BesselIIν ⁣(z)I_{\nu}\!\left(z\right) Modified Bessel function of the first kind
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("58d91f"),
    Formula(Equal(BesselIDerivative(nu, z, 1), Div(Add(BesselI(Sub(nu, 1), z), BesselI(Add(nu, 1), z)), 2))),
    Variables(nu, z),
    Assumptions(And(Element(nu, ZZ), Element(z, CC)), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC