From Ordner, a catalog of real numbers in Fungrim.
Previous interval: [0.00000000000000000000000000000, 0.381966011250105151795413165634]
This interval: [0.381966011250105151795413165634, 1.00000005960818905125947961244]
Next interval: [1.00000005960818905125947961244, 2.07440022977064900739949056948]
Decimal | Expression [entries] | Frequency |
---|---|---|
0.381966011250105151795413165634 | Div(Sub(3, Sqrt(5)), 2) [22b67a da1873] | 2 (#578) |
0.384900179459750509672765853668 | Div(Mul(2, Sqrt(3)), 9) [68b73d] | 1 (#1151) |
0.389602532471310643783640687013 | Div(Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 2)), Pow(Add(1, Sqrt(2)), Div(1, 8))) [be2f32] | 1 (#3009) |
0.392699081698724154807830422910 | Div(Pi, 8) [7783f9 a9ecff 0bd544] Atan(Sub(Sqrt(2), 1)) [a9ecff] | 3 (#307) |
0.395833333333333333333333333333 | Div(19, 48) [675f23] Neg(Neg(Div(19, 48))) [675f23] | 1 (#2682) |
0.398471163238429053291831707018 | KeiperLiLambda(18) [faf448] | 1 (#963) |
0.398942280401432677939946059934 | Div(1, Sqrt(Mul(2, Pi))) [47acde d3baaf] | 2 (#436) |
0.406298886459960246612785047283 | IncompleteEllipticE(Div(Pi, 6), 4) [eba27c] Re(IncompleteEllipticE(Div(Pi, 6), 4)) [eba27c] Sub(Mul(2, EllipticE(Div(1, 4))), Mul(Div(3, 2), EllipticK(Div(1, 4)))) [eba27c] | 1 (#1247) |
0.411438869538491211129689181181 | Div(1, Pow(2, Div(41, 32))) [be2f32] | 1 (#3006) |
0.413629586924998359111922140616 | Im(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))) [0abbe1] Neg(Im(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2)))) [175b7a] Im(Div(Mul(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(7, 3)), Pi))) [0abbe1] Neg(Im(Div(Mul(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(7, 3)), Pi)))) [175b7a] | 2 (#519) |
0.414213562373095048801688724210 | Sub(Sqrt(2), 1) [669765 324483 a9ecff 2f3ed3 675f23 dd5f43] | 6 (#152) |
0.416666666666666666666666666667 | Div(5, 12) [ea26d4] | 1 (#3244) |
0.418618057595363173937275004100 | KeiperLiLambda(19) [faf448] | 1 (#964) |
0.418938533204672741780329736406 | Div(Sub(Log(Mul(2, Pi)), 1), 2) [dbfd5b 0ad263 a54fb0] ComplexDerivative(BarnesG(z), For(z, 1)) [dbfd5b] Mul(Div(1, 2), Sub(Log(Mul(2, Pi)), 1)) [f50c74] | 4 (#276) |
0.422784335098467139393487909918 | DigammaFunction(2) [ada157] Sub(1, ConstGamma) [ada157] | 1 (#3122) |
0.423606542396989543303249561741 | Abs(CarlsonRG(0, 1, -1)) [9e30e7] Div(Pow(Pi, Div(3, 2)), Pow(Gamma(Div(1, 4)), 2)) [2573ba 3b272e 9f3474] Abs(Mul(Div(Mul(Sqrt(2), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [9e30e7] | 4 (#238) |
0.427597736449185094199167149016 | Sub(Pow(RiemannZeta(3), 2), RiemannZeta(6)) [3a5167] | 1 (#3179) |
0.428097245096172464423491268730 | CarlsonRD(1, 2, 2) [4d2c10] CarlsonRJ(1, 2, 2, 2) [397051] Sub(Div(Mul(3, Pi), 8), Div(3, 4)) [4d2c10 397051] | 2 (#543) |
0.430408940964004038889433232951 | DirichletL(1, DirichletCharacter(5, 4)) [c9d117] Div(Mul(2, Log(GoldenRatio)), Sqrt(5)) [c9d117] | 1 (#3072) |
0.433012701892219323381861585376 | Div(Sqrt(3), 4) [40a376] | 1 (#1241) |
0.434979442046082295902361740311 | Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 2)) [be2f32] | 1 (#3010) |
0.437500000000000000000000000000 | Div(7, 16) [3fb309 8c4ab4 2f3ed3 6cbce8 dd5f43] Neg(Neg(Div(7, 16))) [3fb309 8c4ab4 2f3ed3 6cbce8 dd5f43] | 5 (#225) |
0.438463843604660756479973067672 | KeiperLiLambda(20) [faf448] | 1 (#965) |
0.440686793509771512616304662490 | Div(Log(Add(1, Sqrt(2))), 2) [4d7098] | 1 (#1257) |
0.443259803921568627450980392157 | Div(3617, 8160) [e50a56] RiemannZeta(-15) [e50a56] | 1 (#1767) |
0.448288357353826357914823710399 | AiryBi(0, 1) [fba07c bd319e 4d65e5] Div(Pow(3, Div(1, 6)), Gamma(Div(1, 3))) [fba07c] | 3 (#423) |
0.455267689406252396614496709439 | Div(Pow(3, Div(1, 8)), Pow(2, Div(4, 3))) [e3e4c5] | 1 (#3026) |
0.455938124796739220864073746286 | DedekindEta(Mul(3, ConstI)) [9ce413] Div(DedekindEta(ConstI), Mul(Pow(3, Div(3, 8)), Pow(Add(2, Sqrt(3)), Div(1, 12)))) [9ce413] | 1 (#2978) |
0.457998129673472332493399816183 | KeiperLiLambda(21) [faf448] | 1 (#966) |
0.458333333333333333333333333333 | Div(11, 24) [c60033 5384f3] | 2 (#698) |
0.463647609000806116214256231461 | Atan(Div(1, 2)) [b1357b 5278da cbf396] Arg(Add(1, Div(ConstI, 2))) [583bf9 324483] | 5 (#194) |
0.467418930105172885045515060188 | Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 8) [303827 3047b1] | 2 (#557) |
0.475238410033681497042196315658 | Mul(Pow(2, Neg(Div(7, 16))), Sqrt(Sub(Sqrt(2), 1))) [2f3ed3 dd5f43] | 2 (#685) |
0.477211278860676122594889221428 | KeiperLiLambda(22) [faf448] | 1 (#967) |
0.480453013918201424667102526327 | Pow(Log(2), 2) [70a705] | 1 (#2519) |
0.481211825059603447497758913424 | Log(GoldenRatio) [12b336 bceed4 c9d117 c4d78a fd732d] Re(Add(Log(GoldenRatio), Mul(Mul(Div(1, 2), Pi), ConstI))) [c4d78a] | 5 (#216) |
0.491658987901748465132568128612 | Add(Sub(-1, Sqrt(3)), Mul(Sqrt(2), Parentheses(Pow(3, Div(3, 4))))) [675f23] | 1 (#2693) |
0.495348781221220541911898994141 | Sub(Pow(5, Div(1, 4)), 1) [390158] | 1 (#2671) |
0.496094426544134819170077642845 | KeiperLiLambda(23) [faf448] | 1 (#968) |
0.496285934852365965773075754684 | AGM(1, Sub(3, Mul(2, Sqrt(2)))) [f9190b] Div(Mul(2, Sub(2, Sqrt(2)), Pow(Pi, Div(3, 2))), Pow(Gamma(Div(1, 4)), 2)) [f9190b] | 1 (#1226) |
0.497419978187045740125419396655 | Mul(4, Atan(Div(1, 8))) [5278da] | 1 (#1107) |
0.498015668118356042713691117462 | Neg(Im(Gamma(ConstI))) [9c93bb] | 1 (#1174) |
0.500000000000000000000000000000 | Div(1, 2) [47acde ad1eaf c7b921 a1a3d4 4c462b 7d559c 235d0d 72b5bd a498dd 27586f ... 10 of 289 shown] Sin(Div(Pi, 6)) [ad6b74] HurwitzZeta(0, 0) [150b3e] CarlsonRG(0, 0, 1) [d5ff09] 4 of 33 expressions shown | 320 (#8) |
0.503409982047134375505483520003 | Mul(Pow(2, Neg(Div(19, 48))), Pow(3, Neg(Div(3, 8)))) [675f23] | 1 (#2680) |
0.503626473306120962964812752516 | Sub(Sub(Add(18, Mul(12, Sqrt(2))), Mul(10, Sqrt(3))), Mul(7, Sqrt(6))) [c60033] | 1 (#2705) |
0.504083008264455409258269304533 | Neg(DigammaFunctionZero(1)) [950e5a] | 1 (#1046) |
0.510732248846902708253147860050 | Div(1, Pow(6, Div(3, 8))) [62ffb3] | 1 (#2987) |
0.511325210336647483894938097827 | Neg(Arg(CarlsonRC(-1, 1))) [7ea1ad] Neg(Arg(Sub(Div(Mul(Pi, Sqrt(2)), 4), Mul(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), ConstI)))) [7ea1ad] | 1 (#1253) |
0.514639495522971542376419070335 | KeiperLiLambda(24) [faf448] | 1 (#969) |
0.517168156758258541016790885337 | Mul(Div(Pi, 8), Log(Add(2, Sqrt(3)))) [0bd544] | 1 (#3117) |
0.521564046864939841158180269628 | Abs(Gamma(ConstI)) [9c93bb] Sqrt(Div(Pi, Sinh(Pi))) [9c93bb] | 1 (#1172) |
0.522800417498986502495294888625 | CarlsonRD(1, 1, 2) [f47947] CarlsonRJ(1, 1, 2, 2) [a9f190] Sub(Mul(3, Log(Add(1, Sqrt(2)))), Div(Mul(3, Sqrt(2)), 2)) [f47947 a9f190] | 2 (#540) |
0.523521700017999266800534404806 | Decimal("0.523521700017999266800534404806") [67f2ef] | 1 (#3058) |
0.523598775598298873077107230547 | Div(Pi, 6) [45740a d88dd1 47acde a91f8d f89d5a ad6b74 aac129 3c1021 eba27c] Neg(Neg(Div(Pi, 6))) [f89d5a] Atan(Div(1, Sqrt(3))) [3c1021] | 9 (#113) |
0.529821852877479280942811021683 | Pow(Sub(Div(Sub(5, Sqrt(3)), 2), Div(Pow(3, Div(3, 4)), Sqrt(2))), Div(1, 6)) [62ffb3] | 1 (#2989) |
0.532839208515663031997734315271 | KeiperLiLambda(25) [faf448] | 1 (#970) |
0.534799996739570370523993264251 | Neg(Log(Sub(2, Sqrt(2)))) [8c368f] | 1 (#3144) |
0.537002997924107369959458445431 | Add(Div(Pi, 8), Div(ConstGamma, 4)) [7783f9] | 1 (#2505) |
0.541196100146196984399723205366 | Div(Mul(Pow(Sub(Sqrt(2), 1), Div(2, 3)), Pow(Add(4, Mul(3, Sqrt(2))), Div(1, 12))), Pow(2, Div(7, 24))) [324483] | 1 (#2634) |
0.544396522575900532625172224559 | Div(Mul(Pi, Log(2)), 4) [5c9675 997777] | 2 (#509) |
0.545253866332628829603505327880 | Pow(2, Neg(Div(7, 8))) [e2bc80] | 1 (#2657) |
0.549306144334054845697622618461 | Div(Log(3), 2) [a91f8d] IncompleteEllipticF(Div(Pi, 6), 1) [a91f8d] | 1 (#1245) |
0.550687098024602664273221423541 | KeiperLiLambda(26) [faf448] | 1 (#971) |
0.551028597648577609835859310291 | Pow(Add(Add(Neg(Div(7, 2)), Sqrt(7)), Mul(Div(1, 2), Sqrt(Add(-7, Mul(4, Sqrt(7)))))), Div(1, 4)) [7cc3d3] | 1 (#2997) |
0.555360367269795780876985123758 | Div(Mul(Sqrt(2), Pi), 8) [6e9544] | 1 (#1262) |
0.555669052456122499171010936031 | Pow(Sub(Sqrt(2), 1), Div(2, 3)) [324483] | 1 (#2636) |
0.558596102528873544004000000671 | Div(Add(Sqrt(Add(13, Sqrt(7))), Sqrt(Add(7, Mul(3, Sqrt(7))))), 14) [72f583] | 1 (#2608) |
0.559016994374947424102293417183 | Div(Sqrt(5), 4) [da1873] | 1 (#1467) |
0.561459483566885169824143214791 | Exp(Neg(ConstGamma)) [acfc1f] SequenceLimitInferior(Div(Mul(Totient(n), Log(Log(n))), n), For(n, Infinity)) [acfc1f] | 1 (#3075) |
0.564189583547756286948079451561 | Div(1, Sqrt(Pi)) [47acde] | 1 (#741) |
0.565162139789654229908969879624 | Neg(Im(CarlsonRD(1, 1, -1))) [545e8b] Neg(Re(CarlsonRJ(1, 1, 1, -1))) [e04867] Neg(Im(CarlsonRJ(1, 1, -1, -1))) [534335] Neg(Re(CarlsonRJ(1, -1, -1, 1))) [4c1db8] 4 of 8 expressions shown | 4 (#246) |
0.567143290409783872999968662210 | LambertW(0, 1) [5d4cce] | 1 (#1267) |
0.567588218416655691251406468410 | Mul(4, Atan(Div(1, 7))) [b1357b 7ce79e 0644b6] | 3 (#298) |
0.568177513547725297737686428200 | KeiperLiLambda(27) [faf448] | 1 (#972) |
0.577215664901532860606512090082 | ConstGamma [98f642 39fe5f 433a5c a2675b 014c4e 967bbb 39ce44 ee3dc5 cf70ce 28bf9a ... 10 of 57 shown] StieltjesGamma(0) [e5bd3c 8ae153] StieltjesGamma(0, 1) [8ae153] Neg(Neg(ConstGamma)) [ea2482 f946a5 686524 acfc1f a4cc3b c76eaf 3fe553] 4 of 16 expressions shown | 58 (#22) |
0.577350269189625764509148780502 | Div(1, Sqrt(3)) [3c1021] | 1 (#1221) |
0.585305626127770042717390824274 | KeiperLiLambda(28) [faf448] | 1 (#973) |
0.585786437626904951198311275790 | Sub(2, Sqrt(2)) [f9190b 8c368f] | 2 (#513) |
0.587785252292473129168705954639 | Im(Exp(Div(Mul(Pi, ConstI), 5))) [7a56c2] Im(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))) [7a56c2] Neg(Im(Neg(Exp(Div(Mul(Pi, ConstI), 5))))) [7a56c2] Neg(Im(Neg(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))))) [7a56c2] | 1 (#3069) |
0.587974282891712058733172458782 | JacobiTheta(3, 0, Add(1, Div(ConstI, 2))) [324483] Mul(Brackets(Div(Mul(Pow(Sub(Sqrt(2), 1), Div(2, 3)), Pow(Add(4, Mul(3, Sqrt(2))), Div(1, 12))), Pow(2, Div(7, 24)))), JacobiTheta(3, 0, ConstI)) [324483] | 1 (#2633) |
0.592382781332415885290363374492 | DedekindEta(Mul(2, ConstI)) [87e9ed] Div(DedekindEta(ConstI), Pow(2, Div(3, 8))) [87e9ed] | 1 (#2976) |
0.592386913044362132288518432670 | Mul(Mul(Pow(2, Neg(Div(7, 16))), Sqrt(Sub(Sqrt(2), 1))), Pow(Add(Sqrt(2), 1), Div(1, 4))) [2f3ed3 dd5f43] | 2 (#684) |
0.599070117367796103719961246140 | Im(EllipticE(2)) [5d2c01] Re(EllipticE(2)) [5d2c01] Im(AGM(1, ConstI)) [69d0a3] Re(AGM(1, ConstI)) [69d0a3] 4 of 15 expressions shown | 4 (#236) |
0.600000000000000000000000000000 | Decimal("0.6") [855201] | 1 (#1087) |
0.602067430239745495326183060367 | KeiperLiLambda(29) [faf448] | 1 (#974) |
0.603244281209446206191429224535 | BarnesG(Div(1, 2)) [8b7991] Div(Mul(Pow(2, Div(1, 24)), Exp(Div(1, 8))), Mul(Pow(Pi, Div(1, 4)), Pow(ConstGlaisher, Div(3, 2)))) [8b7991] | 1 (#3223) |
0.604599788078072616864692752547 | Div(Pi, Sqrt(27)) [d83109] DirichletL(1, DirichletCharacter(3, 2)) [d83109] | 1 (#3071) |
0.607927101854026628663276779258 | Div(6, Pow(Pi, 2)) [0477b3 3bf702 3b43b0 f88596] SequenceLimit(Div(Sum(Cardinality(DirichletGroup(q)), For(q, 1, N)), Mul(Div(1, 2), Pow(N, 2))), For(N, Infinity)) [f88596] SequenceLimit(Div(Sum(Cardinality(PrimitiveDirichletCharacters(q)), For(q, 1, N)), Sum(Cardinality(DirichletGroup(q)), For(q, 1, N))), For(N, Infinity)) [3b43b0] | 4 (#274) |
0.614926627446000735150922369094 | AiryBi(0) [4d65e5 bd319e 9a8d4d] Div(1, Mul(Pow(3, Div(1, 6)), Gamma(Div(2, 3)))) [9a8d4d] | 3 (#422) |
0.616850275068084913677155687492 | Div(Pow(Pi, 2), 16) [5c9675 997777] | 2 (#510) |
0.618033988749894848204586834366 | Sub(GoldenRatio, 1) [31f52c 05209f] Div(1, GoldenRatio) [2e0596 31f52c 6d2709] Div(Sub(Sqrt(5), 1), 2) [344963] Neg(Sub(1, GoldenRatio)) [ebfcd8 77c324] 4 of 7 expressions shown | 8 (#123) |
0.618459743027114520771155860493 | KeiperLiLambda(30) [faf448] | 1 (#975) |
0.623225240140230513394020080251 | Re(CarlsonRC(1, -1)) [25435b] Neg(Im(CarlsonRC(-1, 1))) [7ea1ad] Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2) [7ea1ad 25435b] Im(Mul(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), ConstI)) [7ea1ad] 4 of 6 expressions shown | 2 (#532) |
0.624181490010165748253394493143 | Div(Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 4)), Pow(Add(1, Sqrt(2)), Div(1, 16))) [0701dc] | 1 (#3018) |
0.625000000000000000000000000000 | Div(5, 8) [0701dc] | 1 (#3024) |
0.628318530717958647692528676656 | Div(Pi, 5) [98a765 47acde] Im(Div(Mul(Pi, ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Pi, ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 3 (#279) |
0.635420293110300637837690015481 | DedekindEta(Mul(Sqrt(3), ConstI)) [e3e4c5] Mul(Div(Pow(3, Div(1, 8)), Pow(2, Div(4, 3))), Div(Pow(Gamma(Div(1, 3)), Div(3, 2)), Pi)) [e3e4c5] | 1 (#3025) |
0.636619772367581343075535053490 | Div(2, Pi) [799b5e 47acde fdc94c d6703a 6fce07 d5b7e8] Sinc(Div(Pi, 2)) [fdc94c] Neg(Neg(Div(2, Pi))) [d5b7e8] Im(Div(Mul(2, ConstI), Pi)) [c18c95] 4 of 7 expressions shown | 8 (#121) |
0.643594252905582624735443437418 | Sqrt(Sub(Sqrt(2), 1)) [2f3ed3 dd5f43] | 2 (#686) |
0.643805509807655071153017462540 | CarlsonRD(2, 2, 1) [eda57d] CarlsonRJ(1, 2, 2, 1) [a1414f] CarlsonRJ(1, 1, 1, 2) [b1c84e] Sub(3, Div(Mul(3, Pi), 4)) [b1c84e eda57d a1414f] | 3 (#323) |
0.644934066848226436472415166646 | HurwitzZeta(2, 2) [ac8d3c] DigammaFunction(2, 1) [fa0292] Sub(Div(Pow(Pi, 2), 6), 1) [fa0292 ac8d3c] | 2 (#476) |
0.655514388573029952616209897473 | Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Mul(2, Pi)))) [3f1547 84f403] | 2 (#539) |
0.656954145193583604441760625638 | Neg(Sub(Add(Add(Div(Pi, 8), Div(ConstGamma, 4)), Div(Log(Mul(8, Pi)), 4)), 2)) [7783f9] | 1 (#2503) |
0.659529712784861798073438197304 | Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 4)) [0701dc] | 1 (#3019) |
0.662337782140525953155821498762 | Pow(3, Neg(Div(3, 8))) [675f23] | 1 (#2683) |
0.662453004006613464037829088912 | Mul(Pow(Sub(Sqrt(2), 1), Div(2, 3)), Pow(Add(4, Mul(3, Sqrt(2))), Div(1, 12))) [324483] | 1 (#2635) |
0.664078308635359659719767644331 | Im(Div(Mul(Mul(21, Sqrt(10)), ConstI), 100)) [6ae250] Im(Add(Div(1, 2), Div(Mul(Mul(21, Sqrt(10)), ConstI), 100))) [6ae250] | 1 (#3052) |
0.666355847615437348636752272710 | Mul(2, Pow(ConstGamma, 2)) [a4f9c9] | 1 (#3165) |
0.666666666666666666666666666667 | Div(2, 3) [bd319e 693cfe 1a15f9 01bbb6 e72e96 588889 324483 9a8d4d fb7a63 c362e8 ... 10 of 16 shown] Integral(Div(Mul(Pow(JacobiTheta(2, 0, Mul(ConstI, t)), 4), Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 2)), Add(1, Pow(t, 2))), For(t, 0, Infinity)) [1a15f9] 2 of 2 expressions shown | 16 (#78) |
0.669596543054548098937767995422 | Div(Mul(7, RiemannZeta(3)), Mul(4, Pi)) [d6703a] | 1 (#3121) |
0.674900000000000000000000000000 | Decimal("0.6749") [e7b5be] | 1 (#2530) |
0.693147180559945309417232121458 | Log(2) [8c368f 177de7 e4cdf1 bad5d9 5df909 dad27b 4f3d2b d496b8 2e40b8 140815 ... 10 of 17 shown] Neg(Neg(Log(2))) [4f3d2b] 3 of 3 expressions shown | 17 (#72) |
0.693846074606742711934889485612 | Mul(ConstGamma, RiemannZeta(3)) [a4f9c9] | 1 (#3167) |
0.700000000000000000000000000000 | Decimal("0.7") [3009a8] Im(Mul(Decimal("0.7"), ConstI)) [3009a8] Im(Add(Decimal("-0.8"), Mul(Decimal("0.7"), ConstI))) [3009a8] | 1 (#2724) |
0.707106781186547524400844362105 | Sqrt(Div(1, 2)) [61480c] Div(1, Sqrt(2)) [61480c 6d9ceb 0ad836 13c539 042551 63ba30] Div(Sqrt(2), 2) [61480c 4d7098 e3896e 5fc688 14f8c2] Sin(Div(Pi, 4)) [5fc688] 4 of 12 expressions shown | 14 (#86) |
0.711566197550572432096973806086 | MultiZetaValue(2, 3) [856317] Sub(Mul(Div(9, 2), RiemannZeta(5)), Mul(Mul(2, RiemannZeta(2)), RiemannZeta(3))) [856317] | 1 (#3175) |
0.717770011046129997821193223666 | Pow(AGM(1, Div(1, Sqrt(2))), 2) [6d9ceb] | 1 (#1230) |
0.718750000000000000000000000000 | Div(23, 32) [a1e634] | 1 (#1305) |
0.732050807568877293527446341506 | Sub(Sqrt(3), 1) [669765 5384f3] | 2 (#695) |
0.738413072969749655693453740187 | Pow(2, Neg(Div(7, 16))) [3fb309 8c4ab4 2f3ed3 6cbce8 dd5f43] | 5 (#224) |
0.750000000000000000000000000000 | Div(3, 4) [ce66a9 d3b45d c4febd 4d2c10 e2035a cb6c9c fb7a63 d15f11 b347d3 fa8e96 ... 10 of 34 shown] Neg(Neg(Div(3, 4))) [303827 3047b1] Im(Mul(Div(3, 4), ConstI)) [c2c002 d3b45d c4febd e2035a 9b868d 80f43a 0ce854 fa8e96] Im(Add(Div(1, 3), Mul(Div(3, 4), ConstI))) [9b868d c2c002 d3b45d e2035a] 4 of 5 expressions shown | 34 (#39) |
0.757189020329903296450141053464 | Sub(Sub(Div(Mul(Sqrt(3), Pi), 2), ConstGamma), Mul(2, Log(2))) [967bbb] | 1 (#3137) |
0.760050227574557407370231819546 | Pow(2, Neg(Div(19, 48))) [675f23] | 1 (#2681) |
0.763932022500210303590826331269 | Sub(3, Sqrt(5)) [22b67a da1873] | 2 (#579) |
0.768225422326056659002594179576 | DedekindEta(ConstI) [7cc3d3 9ce413 62ffb3 5706ab e9a269 9b8c9f 3a56d8 87e9ed be2f32 0701dc ... 10 of 11 shown] Div(Gamma(Div(1, 4)), Mul(2, Pow(Pi, Div(3, 4)))) [9b8c9f] 2 of 2 expressions shown | 11 (#104) |
0.775363592058335978822397806374 | Div(Mul(20, RiemannZeta(3)), Pow(Pi, 3)) [45267a] Integral(Div(Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 8), Add(1, Pow(t, 2))), For(t, 0, Infinity)) [45267a] | 1 (#2720) |
0.785398163397448309615660845820 | Atan(1) [157c6c 0c9939] Div(Pi, 4) [47acde 71a0ff 6c3ba9 cd55cf 157c6c 79f20e 08cda4 3b8c97 6d3591 8a9884 ... 10 of 25 shown] CarlsonRC(1, 2) [eac389] Arg(Sqrt(ConstI)) [0ad836] 4 of 35 expressions shown | 52 (#24) |
0.785800000000000000000000000000 | Decimal("0.7858") [7f3485] | 1 (#2531) |
0.788607832450766430303256045041 | Div(Add(1, ConstGamma), 2) [0ad263] | 1 (#3245) |
0.788740000000000000000000000000 | Decimal("0.788740") [1c770c] | 1 (#3247) |
0.789262243416320683773084089643 | Pow(Add(Sub(-1, Sqrt(3)), Mul(Sqrt(2), Parentheses(Pow(3, Div(3, 4))))), Div(1, 3)) [675f23] | 1 (#2692) |
0.789582239399523033480199060779 | Mul(4, Atan(Div(1, 5))) [5278da] | 1 (#1106) |
0.790569415042094832999723386108 | Abs(Add(Div(1, 4), Mul(Div(3, 4), ConstI))) [c4febd 80f43a 0ce854 fa8e96] | 4 (#266) |
0.792000000000000000000000000000 | Decimal("0.792") [512beb] | 1 (#3212) |
0.793730335047640519449985183941 | Re(DedekindEta(Exp(Div(Mul(Mul(2, Pi), ConstI), 3)))) [204acd 4af6db] Re(Mul(Exp(Neg(Div(Mul(Pi, ConstI), 24))), Div(Mul(Pow(3, Div(1, 8)), Pow(Gamma(Div(1, 3)), Div(3, 2))), Mul(2, Pi)))) [204acd] | 2 (#716) |
0.798119294034259794176243247335 | Mul(Mul(Pow(2, Neg(Div(19, 48))), Pow(3, Neg(Div(3, 8)))), Pow(Add(Add(Sub(2, Mul(3, Sqrt(2))), Pow(3, Div(5, 4))), Pow(3, Div(3, 4))), Div(1, 3))) [675f23] | 1 (#2679) |
0.800000000000000000000000000000 | Div(4, 5) [adf83a] Decimal("0.8") [855201] Neg(Decimal("-0.8")) [3009a8] Neg(Re(Add(Decimal("-0.8"), Mul(Decimal("0.7"), ConstI)))) [3009a8] | 3 (#292) |
0.800190821403063368180998266976 | Mul(Mul(2, ConstGamma), Log(2)) [70a705] | 1 (#2518) |
0.800579402820038020982754817769 | Abs(DedekindEta(Exp(Div(Mul(Mul(2, Pi), ConstI), 3)))) [204acd 4af6db] Div(Mul(Pow(3, Div(1, 8)), Pow(Gamma(Div(1, 3)), Div(3, 2))), Mul(2, Pi)) [204acd] Abs(Mul(Exp(Neg(Div(Mul(Pi, ConstI), 24))), Div(Mul(Pow(3, Div(1, 8)), Pow(Gamma(Div(1, 3)), Div(3, 2))), Mul(2, Pi)))) [204acd] | 2 (#718) |
0.806042856882309025598780928932 | Div(Log(Mul(8, Pi)), 4) [7783f9] | 1 (#2507) |
0.809016994374947424102293417183 | Cos(Div(Pi, 5)) [98a765] Sin(Div(Mul(3, Pi), 10)) [487e35] Re(Exp(Div(Mul(Pi, ConstI), 5))) [7a56c2] Neg(Re(Neg(Exp(Div(Mul(Pi, ConstI), 5))))) [7a56c2] 4 of 6 expressions shown | 3 (#305) |
0.811742425283353643637002772406 | MultiZetaValue(2, 2) [62de01] Mul(Div(3, 4), RiemannZeta(4)) [62de01] | 1 (#3168) |
0.812500000000000000000000000000 | Div(13, 16) [3a56d8] | 1 (#2984) |
0.818240824176421985149189254931 | Sub(Div(Mul(16, ConstCatalan), Pow(Pi, 2)), Div(2, 3)) [86d68c] Integral(Div(Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 6), Add(1, Pow(t, 2))), For(t, 0, Infinity)) [86d68c] | 1 (#2718) |
0.819648389315024712140031109218 | Pow(Mul(Sub(Sqrt(2), 1), Sub(Sqrt(3), 1)), Div(1, 6)) [669765] | 1 (#2603) |
0.820738150149675393478850951243 | Abs(Add(Div(1, 3), Mul(Div(3, 4), ConstI))) [9b868d c2c002 d3b45d e2035a] | 4 (#268) |
0.822467033424113218236207583323 | Div(Pow(Pi, 2), 12) [11302a] Sum(Div(Pow(-1, Add(n, 1)), Pow(n, 2)), For(n, 1, Infinity)) [11302a] | 1 (#1136) |
0.826993343132688074266989747469 | Sinc(Div(Pi, 3)) [340936] Div(Mul(3, Sqrt(3)), Mul(2, Pi)) [340936] Hypergeometric2F1(Neg(Div(1, 3)), Div(1, 3), 1, 1) [68b73d] | 2 (#498) |
0.831264097624816225287788824481 | Abs(Add(Div(1, 2), Div(Mul(Mul(21, Sqrt(10)), ConstI), 100))) [6ae250] | 1 (#3053) |
0.833040550904693671315477685636 | Im(CarlsonRD(1, -1, -1)) [3047b1] Im(CarlsonRJ(1, -1, -1, -1)) [303827] Im(Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 16)) [303827 3047b1] Im(Add(Sub(Neg(Div(3, 4)), Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 8)), Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 16))) [303827 3047b1] | 2 (#554) |
0.833333333333333333333333333333 | Div(5, 6) [921d61 967bbb 4d1f6b 6ae250 edad97] | 5 (#195) |
0.834626841674073186281429732799 | Pow(JacobiTheta(4, 0, ConstI), 2) [7b362f] | 1 (#1228) |
0.837877066409345483560659472811 | Sub(Log(Mul(2, Pi)), 1) [dbfd5b 0ad263 f50c74 a54fb0] | 4 (#277) |
0.840896415253714543031125476233 | Pow(2, Neg(Div(1, 4))) [4c8873 7f9273 7d7c65 95e9e4] | 4 (#270) |
0.842875177406298021435601828900 | Div(EllipticK(Div(1, 4)), 2) [aac129] IncompleteEllipticF(Div(Pi, 6), 4) [aac129] Re(IncompleteEllipticF(Div(Pi, 6), 4)) [aac129] | 1 (#1246) |
0.843511841685034634002620052000 | Integral(Div(1, Pow(Sinc(x), 2)), For(x, 0, Div(Pi, 4))) [5c9675] Sub(Add(Div(Mul(Pi, Log(2)), 4), ConstCatalan), Div(Pow(Pi, 2), 16)) [5c9675] | 1 (#1192) |
0.847213084793979086606499123482 | Abs(EllipticE(2)) [5d2c01] Abs(AGM(1, ConstI)) [69d0a3] AGM(1, Div(1, Sqrt(2))) [6d9ceb] AGM(1, Div(Sqrt(2), 2)) [e3896e] 4 of 9 expressions shown | 6 (#154) |
0.847213085747693111396791175398 | Mul(Div(Add(Sqrt(Add(13, Sqrt(7))), Sqrt(Add(7, Mul(3, Sqrt(7))))), 14), Pow(Parentheses(28), Div(1, 8))) [72f583] | 1 (#2607) |
0.848717579723899228608207612277 | BarnesG(Div(3, 4)) [dc507f] Div(Mul(Pow(ConstE, Add(Div(3, 32), Div(ConstCatalan, Mul(4, Pi)))), Pow(Gamma(Div(1, 4)), Div(1, 4))), Mul(Mul(Pow(2, Div(1, 8)), Pow(Pi, Div(1, 4))), Pow(ConstGlaisher, Div(9, 8)))) [dc507f] | 1 (#3234) |
0.854248688935409409498384246361 | Neg(Add(Neg(Div(7, 2)), Sqrt(7))) [7cc3d3] | 1 (#2999) |
0.866025403784438646763723170753 | Sin(Div(Pi, 3)) [3c833f] Div(Sqrt(3), 2) [2371b9 3c833f 3aed02] IncompleteEllipticE(Div(Pi, 3), 1) [3aed02] Im(Exp(Div(Mul(Pi, ConstI), 3))) [0c7de4 ec0054 0c8084 9aa62c] 4 of 10 expressions shown | 26 (#51) |
0.867104584539809782565899324904 | Mul(Mul(Pow(Sub(Sqrt(2), 1), Div(1, 12)), Pow(Add(Sqrt(3), 1), Div(1, 6))), Pow(Add(Sub(-1, Sqrt(3)), Mul(Sqrt(2), Parentheses(Pow(3, Div(3, 4))))), Div(1, 3))) [675f23] | 1 (#2688) |
0.872284041065627976175197532171 | Div(Mul(45, RiemannZeta(3)), Mul(2, Pow(Pi, 3))) [8a9884] Mul(Div(Pi, 4), Div(RiemannZeta(3), RiemannZeta(4))) [8a9884] Mul(Div(Pi, 4), Sum(Div(Totient(q), Pow(q, 4)), For(q, 1, Infinity))) [8a9884] | 1 (#2879) |
0.873006666886740093041584642851 | Neg(Sub(StieltjesGamma(1), Mul(Mul(2, ConstGamma), Log(2)))) [70a705] | 1 (#2517) |
0.875000000000000000000000000000 | Div(7, 8) [390158 e2bc80] Neg(Neg(Div(7, 8))) [e2bc80] | 2 (#699) |
0.881373587019543025232609324980 | CarlsonRC(2, 1) [a15c03] CarlsonRF(1, 1, 2) [4cd504] Log(Add(1, Sqrt(2))) [7ea1ad f47947 534335 6e9544 f5d489 303827 4d7098 25435b e04867 4cd504 ... 10 of 17 shown] IncompleteEllipticF(Div(Pi, 4), 1) [f5d489] 4 of 4 expressions shown | 17 (#74) |
0.882542400610606373585825728472 | Div(Mul(4, Log(2)), Pi) [e4cdf1] Integral(Div(Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 4), Add(1, Pow(t, 2))), For(t, 0, Infinity)) [e4cdf1] | 1 (#2717) |
0.885600000000000000000000000000 | Decimal("0.8856") [09e2ed] | 1 (#1471) |
0.885603194410888700278815900583 | Decimal("0.885603194410888700278815900583") [e010c9] | 1 (#1475) |
0.886226925452758013649083741671 | Div(Sqrt(Pi), 2) [48ac55] Gamma(Div(3, 2)) [48ac55] | 1 (#1473) |
0.890729412672261240642726801919 | Neg(DigammaFunction(Div(5, 6))) [967bbb] Neg(Sub(Sub(Sub(Div(Mul(Sqrt(3), Pi), 2), ConstGamma), Mul(2, Log(2))), Div(Mul(3, Log(3)), 2))) [967bbb] | 1 (#3136) |
0.894427190999915878563669467493 | Div(2, Sqrt(5)) [d0d91a 223ce1 fd732d c4d78a] | 4 (#257) |
0.898605176051694155579941869210 | Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))) [62b0c4 c05ed8 060366 2dcf0c] Re(Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [62b0c4 2dcf0c] Im(Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [62b0c4 2dcf0c] | 4 (#244) |
0.900316316157106069555199191007 | Sinc(Div(Pi, 4)) [c9ead2] Div(Mul(2, Sqrt(2)), Pi) [c9ead2] | 1 (#1183) |
0.906899682117108925297039128821 | Div(Mul(Sqrt(3), Pi), 6) [45a969 98f642] Neg(Neg(Div(Mul(Sqrt(3), Pi), 6))) [98f642] | 2 (#723) |
0.913579138156116821407242593401 | JacobiTheta(4, 0, ConstI) [3fb309 8c4ab4 7d7c65 7b362f 2f3ed3 66df95 dd5f43] JacobiTheta(2, 0, ConstI) [7d7c65] JacobiTheta(3, 0, Add(1, ConstI)) [4c8873] Mul(Brackets(Pow(2, Neg(Div(1, 4)))), JacobiTheta(3, 0, ConstI)) [7d7c65 4c8873] 4 of 5 expressions shown | 8 (#124) |
0.915965594177219015054603514932 | ConstCatalan [ce66a9 1f1fb4 d6703a fd82ab c2976e ba58e0 79f20e 08cda4 6d3591 ed4cca ... 10 of 47 shown] Im(PolyLog(2, ConstI)) [1d65c2 208da7] Im(Mul(ConstCatalan, ConstI)) [208da7] DirichletL(2, DirichletCharacter(4, 3)) [9e9922] 4 of 37 expressions shown | 47 (#28) |
0.917004043204671231743541594794 | Pow(2, Neg(Div(1, 8))) [b58070] | 1 (#2642) |
0.918938533204672741780329736406 | Div(Log(Mul(2, Pi)), 2) [37a95a 99a9c6 2398a1 3544a0 f3b870 4a3612] Mul(Div(1, 2), Log(Mul(2, Pi))) [47acde f50c74] | 8 (#122) |
0.920435368044324696354816069490 | Mul(Pow(2, Neg(Div(7, 16))), Pow(Add(Sqrt(2), 1), Div(1, 4))) [6cbce8 3fb309 8c4ab4] | 3 (#428) |
0.920441775846998444623749399480 | Div(Pow(Add(Add(1, Sqrt(3)), Mul(Sqrt(2), Pow(Parentheses(27), Div(1, 4)))), Div(1, 3)), Mul(Mul(Pow(2, Div(11, 24)), Pow(3, Div(3, 8))), Pow(Sub(Sqrt(3), 1), Div(1, 6)))) [5384f3] | 1 (#2646) |
0.920441787813202973933971869405 | Mul(Pow(2, Neg(Div(7, 8))), Pow(Add(Add(Add(16, Mul(15, Pow(2, Div(1, 4)))), Mul(12, Sqrt(2))), Mul(9, Pow(8, Div(1, 4)))), Div(1, 8))) [e2bc80] | 1 (#2656) |
0.920441787835549175608363459758 | Div(Pow(2, Div(7, 8)), Mul(Sub(Pow(5, Div(1, 4)), 1), Sqrt(Add(Mul(5, Sqrt(5)), 5)))) [390158] | 1 (#2668) |
0.920441787835590905860261583223 | Div(Mul(Mul(Pow(2, Neg(Div(19, 48))), Pow(3, Neg(Div(3, 8)))), Pow(Add(Add(Sub(2, Mul(3, Sqrt(2))), Pow(3, Div(5, 4))), Pow(3, Div(3, 4))), Div(1, 3))), Mul(Mul(Pow(Sub(Sqrt(2), 1), Div(1, 12)), Pow(Add(Sqrt(3), 1), Div(1, 6))), Pow(Add(Sub(-1, Sqrt(3)), Mul(Sqrt(2), Parentheses(Pow(3, Div(3, 4))))), Div(1, 3)))) [675f23] | 1 (#2678) |
0.920441787835590983934917130750 | Div(Add(Add(3, Sqrt(5)), Mul(Add(Add(Sqrt(3), Sqrt(5)), Pow(60, Div(1, 4))), Pow(Add(2, Sqrt(3)), Div(1, 3)))), Mul(3, Sqrt(Add(10, Mul(10, Sqrt(5)))))) [6ade92] | 1 (#2621) |
0.920441787836558457569186494962 | Div(Add(1, Pow(Mul(2, Add(Sqrt(3), 1)), Div(1, 3))), 3) [8356db] | 1 (#2617) |
0.920441788353665042026379735296 | Sqrt(Mul(Div(Add(Sqrt(Add(13, Sqrt(7))), Sqrt(Add(7, Mul(3, Sqrt(7))))), 14), Pow(Parentheses(28), Div(1, 8)))) [72f583] | 1 (#2606) |
0.920441799824183523246084862020 | Div(Pow(Add(Sub(Add(Add(Add(-4, Mul(3, Sqrt(2))), Pow(3, Div(5, 4))), Mul(2, Sqrt(3))), Pow(3, Div(3, 4))), Mul(Mul(2, Sqrt(2)), Parentheses(Pow(3, Div(3, 4))))), Div(1, 3)), Mul(Mul(2, Parentheses(Pow(3, Div(3, 8)))), Pow(Mul(Sub(Sqrt(2), 1), Sub(Sqrt(3), 1)), Div(1, 6)))) [669765] | 1 (#2594) |
0.920442065259926035765365194211 | Div(1, Sqrt(Sub(Mul(5, Sqrt(5)), 10))) [483e7e] Div(Sqrt(Add(5, Mul(2, Sqrt(5)))), Pow(5, Div(3, 4))) [cb6c9c] | 2 (#692) |
0.920448207626857271515562738117 | Div(Add(1, Pow(2, Neg(Div(1, 4)))), 2) [95e9e4] | 1 (#2587) |
0.920590346252050823715068071627 | Div(Sqrt(Add(Sqrt(3), 1)), Mul(Pow(2, Div(1, 4)), Pow(3, Div(3, 8)))) [f12e20] | 1 (#2583) |
0.922784335098467139393487909918 | DigammaFunction(3) [75f9bf] Sub(Div(3, 2), ConstGamma) [75f9bf] | 1 (#3123) |
0.923879532511286756128183189397 | Div(Sqrt(Add(Sqrt(2), 2)), 2) [cf3c8e] | 1 (#2580) |
0.925426960095780251585316506689 | Arg(Add(Div(1, 2), Div(Mul(Mul(21, Sqrt(10)), ConstI), 100))) [6ae250] | 1 (#3054) |
0.927037338650685959216925173598 | CarlsonRF(0, 2, 4) [4c1988] Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Pi))) [2573ba 3b272e 9f3474 4c1988] | 4 (#237) |
0.929184648969328764318121433933 | Pow(Sub(Sqrt(2), 1), Div(1, 12)) [675f23] | 1 (#2690) |
0.934837860210345770091030120376 | Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 4) [4c1db8 534335 545e8b e04867] | 4 (#249) |
0.938760470531896231282382701319 | Abs(PolyLog(2, ConstI)) [1d65c2 208da7] Abs(Add(Neg(Div(Pow(Pi, 2), 48)), Mul(ConstCatalan, ConstI))) [208da7] | 2 (#505) |
0.942477796076937971538793014984 | Div(Mul(3, Pi), 10) [487e35] | 1 (#1171) |
0.946441393359668409691087120864 | Mul(Div(1, 2), Sqrt(Add(-7, Mul(4, Sqrt(7))))) [7cc3d3] | 1 (#3000) |
0.949343841329227700533630424180 | Pow(Sub(Sqrt(3), 1), Div(1, 6)) [5384f3] | 1 (#2652) |
0.951056516295153572116439333379 | Im(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))) [7a56c2] Im(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))) [7a56c2] Neg(Im(Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))))) [7a56c2] Neg(Im(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))))) [7a56c2] | 1 (#3070) |
0.954929658551372014613302580235 | Div(3, Pi) [45740a a691b3] Sinc(Div(Pi, 6)) [45740a] EisensteinE(2, ConstI) [a691b3] | 2 (#508) |
0.955049447256928004476190520543 | CarlsonRG(0, 1, 2) [84f403] Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Mul(2, Pi)))), Div(Pow(Pi, Div(3, 2)), Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2)))) [3f1547 84f403] Mul(Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Mul(2, Pi)))), Div(Pow(Pi, Div(3, 2)), Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2))))) [3f1547] | 2 (#538) |
0.962423650119206894995517826849 | Mul(2, Log(GoldenRatio)) [c9d117] Neg(Log(Div(Sub(3, Sqrt(5)), 2))) [22b67a da1873] | 3 (#336) |
0.965925826289068286749743199729 | Re(Exp(Div(Mul(Pi, ConstI), 12))) [1bae52] Re(Exp(Div(Mul(ConstI, Pi), 12))) [0abbe1] Re(Exp(Neg(Div(Mul(ConstI, Pi), 12)))) [175b7a] | 3 (#314) |
0.970562748477140585620264690516 | Sub(Mul(12, Sqrt(2)), 16) [e30d7e 4877f2] ModularLambda(Div(ConstI, 2)) [4877f2] | 2 (#535) |
0.975000000000000000000000000000 | Decimal("0.975") [9697b8] | 1 (#3113) |
0.979455872953828149250960320620 | Mul(48, Atan(Div(1, 49))) [8332d8] | 1 (#1118) |
0.979914652507456616688329924845 | Mul(4, Atan(Div(1, 4))) [7ce79e] | 1 (#1111) |
0.982793723247329067985710611015 | Arg(Add(2, Mul(3, ConstI))) [0e2bcb] | 1 (#1089) |
0.991444861373810411144557526929 | Re(Exp(Div(Mul(Pi, ConstI), 24))) [a1a3d4] Re(Exp(Neg(Div(Mul(Pi, ConstI), 24)))) [204acd] | 2 (#719) |
0.993580661893363758624809601557 | Sub(Div(Pi, 2), ConstGamma) [f93bae] | 1 (#3132) |
0.996265114560907135789957638523 | JacobiTheta(3, 0, Add(1, Mul(2, ConstI))) [b58070] Mul(Brackets(Pow(2, Neg(Div(1, 8)))), JacobiTheta(3, 0, ConstI)) [b58070] | 1 (#2640) |
0.999993025315287582009312256391 | JacobiTheta(3, 0, Add(1, Mul(4, ConstI))) [6cbce8] Mul(Brackets(Mul(Pow(2, Neg(Div(7, 16))), Pow(Add(Sqrt(2), 1), Div(1, 4)))), JacobiTheta(3, 0, ConstI)) [6cbce8 3fb309 8c4ab4] | 3 (#427) |
0.999999986975175727840198543576 | JacobiTheta(3, 0, Add(1, Mul(6, ConstI))) [5384f3] Mul(Brackets(Div(Pow(Add(Add(1, Sqrt(3)), Mul(Sqrt(2), Pow(Parentheses(27), Div(1, 4)))), Div(1, 3)), Mul(Mul(Pow(2, Div(11, 24)), Pow(3, Div(3, 8))), Pow(Sub(Sqrt(3), 1), Div(1, 6))))), JacobiTheta(3, 0, ConstI)) [5384f3] | 1 (#2644) |
0.999999999975676886581181383205 | JacobiTheta(3, 0, Add(1, Mul(8, ConstI))) [e2bc80] Mul(Brackets(Mul(Pow(2, Neg(Div(7, 8))), Pow(Add(Add(Add(16, Mul(15, Pow(2, Div(1, 4)))), Mul(12, Sqrt(2))), Mul(9, Pow(8, Div(1, 4)))), Div(1, 8)))), JacobiTheta(3, 0, ConstI)) [e2bc80] | 1 (#2653) |
0.999999999985293718649943656625 | Div(467807924713440738696537864469, 467807924720320453655260875000) [af8328] | 1 (#1185) |
0.999999999999954577978633518123 | JacobiTheta(3, 0, Add(1, Mul(10, ConstI))) [390158] Mul(Brackets(Div(Pow(2, Div(7, 8)), Mul(Sub(Pow(5, Div(1, 4)), 1), Sqrt(Add(Mul(5, Sqrt(5)), 5))))), JacobiTheta(3, 0, ConstI)) [390158] | 1 (#2665) |
0.999999999999999915176976339678 | JacobiTheta(3, 0, Add(1, Mul(12, ConstI))) [675f23] Mul(Brackets(Div(Mul(Mul(Pow(2, Neg(Div(19, 48))), Pow(3, Neg(Div(3, 8)))), Pow(Add(Add(Sub(2, Mul(3, Sqrt(2))), Pow(3, Div(5, 4))), Pow(3, Div(3, 4))), Div(1, 3))), Mul(Mul(Pow(Sub(Sqrt(2), 1), Div(1, 12)), Pow(Add(Sqrt(3), 1), Div(1, 6))), Pow(Add(Sub(-1, Sqrt(3)), Mul(Sqrt(2), Parentheses(Pow(3, Div(3, 4))))), Div(1, 3))))), JacobiTheta(3, 0, ConstI)) [675f23] | 1 (#2675) |
1.00000000000000000000000000000 | 1 [23256b 848d97 f0d72c a891da 1eeccf bcdfc6 4b040d 42d727 c19cd6 a0ba58 ... 10 of 1910 shown] Exp(0) [27ca8d] Sinc(0) [b18020] Neg(-1) [1eeccf 5e1d3b 72cef9 27586f a68e0e 3df748 2760e7 5dc1c0 71a264 14a365 ... 10 of 346 shown] 4 of 125 expressions shown | 2182 (#1) |
1.00000000000000088817842109308 | RiemannZeta(50) [e93ca8] | 1 (#885) |
1.00000000000000177635684357912 | RiemannZeta(49) [e93ca8] | 1 (#884) |
1.00000000000000355271369133711 | RiemannZeta(48) [e93ca8] | 1 (#883) |
1.00000000000000710542739521085 | RiemannZeta(47) [e93ca8] | 1 (#882) |
1.00000000000001421085482803161 | RiemannZeta(46) [e93ca8] | 1 (#881) |
1.00000000000002842170976889302 | RiemannZeta(45) [e93ca8] | 1 (#880) |
1.00000000000005684341987627586 | RiemannZeta(44) [e93ca8] | 1 (#879) |
1.00000000000011368684076802278 | RiemannZeta(43) [e93ca8] | 1 (#878) |
1.00000000000022737368458246525 | RiemannZeta(42) [e93ca8] | 1 (#877) |
1.00000000000045474737830421540 | RiemannZeta(41) [e93ca8] | 1 (#876) |
1.00000000000090949478402638893 | RiemannZeta(40) [e93ca8 7cb17f] Mul(Div(261082718496449122051, 20080431172289638826798401128390556640625), Pow(Pi, 40)) [7cb17f] | 2 (#464) |
1.00000000000105109703520128971 | JacobiTheta(3, 0, Mul(9, ConstI)) [8356db] Mul(Brackets(Div(Add(1, Pow(Mul(2, Add(Sqrt(3), 1)), Div(1, 3))), 3)), JacobiTheta(3, 0, ConstI)) [8356db] | 1 (#2616) |
1.00000000000181898965030706595 | RiemannZeta(39) [e93ca8] | 1 (#875) |
1.00000000000363797954737865119 | RiemannZeta(38) [e93ca8 7cb17f] Mul(Div(308420411983322, 2403467618492375776343276883984375), Pow(Pi, 38)) [7cb17f] | 2 (#463) |
1.00000000000727595983505748101 | RiemannZeta(37) [e93ca8] | 1 (#874) |
1.00000000001455192189104198424 | RiemannZeta(36) [e93ca8 7cb17f] Mul(Div(26315271553053477373, 20777977561866588586487628662044921875), Pow(Pi, 36)) [7cb17f] | 2 (#462) |
1.00000000002910385044497099687 | RiemannZeta(35) [e93ca8] | 1 (#873) |
1.00000000005820772087902700889 | RiemannZeta(34) [e93ca8 7cb17f] Mul(Div(151628697551, 12130454581433748587292890625), Pow(Pi, 34)) [7cb17f] | 2 (#461) |
1.00000000011641550172700519776 | RiemannZeta(33) [e93ca8] | 1 (#872) |
1.00000000023283118336765054920 | RiemannZeta(32) [e93ca8 7cb17f] Mul(Div(7709321041217, 62490220571022341207266406250), Pow(Pi, 32)) [7cb17f] | 2 (#460) |
1.00000000046566290650337840730 | RiemannZeta(31) [e93ca8] | 1 (#871) |
1.00000000056285369149711054422 | JacobiTheta(3, 0, Mul(7, ConstI)) [72f583] Mul(Brackets(Sqrt(Mul(Div(Add(Sqrt(Add(13, Sqrt(7))), Sqrt(Add(7, Mul(3, Sqrt(7))))), 14), Pow(Parentheses(28), Div(1, 8))))), JacobiTheta(3, 0, ConstI)) [72f583] | 1 (#2605) |
1.00000000093132743241966818287 | RiemannZeta(30) [e93ca8 7cb17f] Mul(Div(6892673020804, 5660878804669082674070015625), Pow(Pi, 30)) [7cb17f] | 2 (#459) |
1.00000000186265972351304900640 | RiemannZeta(29) [e93ca8] | 1 (#870) |
1.00000000372533402478845705482 | RiemannZeta(28) [e93ca8 7cb17f] Mul(Div(6785560294, 564653660170076273671875), Pow(Pi, 28)) [7cb17f] | 2 (#458) |
1.00000000745071178983542949198 | RiemannZeta(27) [e93ca8] | 1 (#869) |
1.00000001302482427215980145642 | JacobiTheta(3, 0, Mul(6, ConstI)) [669765] Mul(Brackets(Div(Pow(Add(Sub(Add(Add(Add(-4, Mul(3, Sqrt(2))), Pow(3, Div(5, 4))), Mul(2, Sqrt(3))), Pow(3, Div(3, 4))), Mul(Mul(2, Sqrt(2)), Parentheses(Pow(3, Div(3, 4))))), Div(1, 3)), Mul(Mul(2, Parentheses(Pow(3, Div(3, 8)))), Pow(Mul(Sub(Sqrt(2), 1), Sub(Sqrt(3), 1)), Div(1, 6))))), JacobiTheta(3, 0, ConstI)) [669765] | 1 (#2593) |
1.00000001490155482836504123466 | RiemannZeta(26) [e93ca8 7cb17f] Mul(Div(1315862, 11094481976030578125), Pow(Pi, 26)) [7cb17f] | 2 (#457) |
1.00000002980350351465228018606 | RiemannZeta(25) [e93ca8] | 1 (#868) |
1.00000005960818905125947961244 | RiemannZeta(24) [e93ca8 7cb17f] Mul(Div(236364091, 201919571963756521875), Pow(Pi, 24)) [7cb17f] | 2 (#456) |
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC