From Ordner, a catalog of real numbers in Fungrim.
Previous interval: [0.381966011250105151795413165634, 1.00000005960818905125947961244]
This interval: [1.00000005960818905125947961244, 2.07440022977064900739949056948]
Next interval: [2.07440022977064900739949056948, 6.28318530717958647692528676656]
Decimal | Expression [entries] | Frequency |
---|---|---|
1.00000005960818905125947961244 | RiemannZeta(24) [e93ca8 7cb17f] Mul(Div(236364091, 201919571963756521875), Pow(Pi, 24)) [7cb17f] | 2 (#456) |
1.00000011921992596531107306779 | RiemannZeta(23) [e93ca8] | 1 (#867) |
1.00000023845050272773299000365 | RiemannZeta(22) [e93ca8 7cb17f] Mul(Div(155366, 13447856940643125), Pow(Pi, 22)) [7cb17f] | 2 (#455) |
1.00000030140345507801292215065 | JacobiTheta(3, 0, Mul(5, ConstI)) [483e7e cb6c9c] Mul(Brackets(Div(1, Sqrt(Sub(Mul(5, Sqrt(5)), 10)))), JacobiTheta(3, 0, ConstI)) [483e7e] Mul(Brackets(Div(Sqrt(Add(5, Mul(2, Sqrt(5)))), Pow(5, Div(3, 4)))), JacobiTheta(3, 0, ConstI)) [cb6c9c] | 2 (#691) |
1.00000047693298678780646311672 | RiemannZeta(21) [e93ca8] | 1 (#866) |
1.00000095396203387279611315204 | RiemannZeta(20) [e93ca8 7cb17f] Mul(Div(174611, 1531329465290625), Pow(Pi, 20)) [7cb17f] | 2 (#454) |
1.00000190821271655393892565696 | RiemannZeta(19) [e93ca8] | 1 (#865) |
1.00000381729326499983985646164 | RiemannZeta(18) [e93ca8 7cb17f] Mul(Div(43867, 38979295480125), Pow(Pi, 18)) [7cb17f] | 2 (#453) |
1.00000697468471241799127935746 | JacobiTheta(3, 0, Mul(4, ConstI)) [95e9e4] Mul(Brackets(Div(Add(1, Pow(2, Neg(Div(1, 4)))), 2)), JacobiTheta(3, 0, ConstI)) [95e9e4] | 1 (#2586) |
1.00000763719763789976227360029 | RiemannZeta(17) [e93ca8] | 1 (#864) |
1.00001528225940865187173257149 | RiemannZeta(16) [e93ca8 7cb17f] Mul(Div(3617, 325641566250), Pow(Pi, 16)) [7cb17f] | 2 (#452) |
1.00003058823630702049355172851 | RiemannZeta(15) [e93ca8] | 1 (#863) |
1.00006124813505870482925854511 | RiemannZeta(14) [e93ca8 7cb17f] Mul(Div(2, 18243225), Pow(Pi, 14)) [7cb17f] | 2 (#451) |
1.00012271334757848914675183653 | RiemannZeta(13) [e93ca8] | 1 (#862) |
1.00016139903514069402150207039 | JacobiTheta(3, 0, Mul(3, ConstI)) [f12e20] Mul(Brackets(Div(Sqrt(Add(Sqrt(3), 1)), Mul(Pow(2, Div(1, 4)), Pow(3, Div(3, 8))))), JacobiTheta(3, 0, ConstI)) [f12e20] | 1 (#2582) |
1.00024608655330804829863799805 | RiemannZeta(12) [e93ca8 7cb17f] Mul(Div(691, 638512875), Pow(Pi, 12)) [7cb17f] | 2 (#450) |
1.00049418860411946455870228253 | RiemannZeta(11) [e93ca8] | 1 (#861) |
1.00090992188725676291928600412 | JacobiTheta(3, 0, Mul(Sqrt(6), ConstI)) [c60033 799b5e] Sqrt(Mul(Div(2, Pi), EllipticK(Mul(Pow(Sub(2, Sqrt(3)), 2), Pow(Sub(Sqrt(2), Sqrt(3)), 2))))) [799b5e] Pow(Mul(Div(Sqrt(6), Mul(96, Pow(Pi, 3))), Div(Mul(Mul(Mul(Gamma(Div(1, 24)), Gamma(Div(5, 24))), Gamma(Div(7, 24))), Gamma(Div(11, 24))), Sub(Sub(Add(18, Mul(12, Sqrt(2))), Mul(10, Sqrt(3))), Mul(7, Sqrt(6))))), Div(1, 4)) [c60033] | 2 (#700) |
1.00099457512781808533714595890 | RiemannZeta(10) [e93ca8 7cb17f] Mul(Div(1, 93555), Pow(Pi, 10)) [7cb17f] | 2 (#449) |
1.00182067173235443474774113087 | Mul(Div(2, Pi), EllipticK(Mul(Pow(Sub(2, Sqrt(3)), 2), Pow(Sub(Sqrt(2), Sqrt(3)), 2)))) [799b5e] | 1 (#2710) |
1.00200839282608221441785276923 | RiemannZeta(9) [e93ca8] | 1 (#860) |
1.00364465831026586399395848902 | Mul(Div(Sqrt(6), Mul(96, Pow(Pi, 3))), Div(Mul(Mul(Mul(Gamma(Div(1, 24)), Gamma(Div(5, 24))), Gamma(Div(7, 24))), Gamma(Div(11, 24))), Sub(Sub(Add(18, Mul(12, Sqrt(2))), Mul(10, Sqrt(3))), Mul(7, Sqrt(6))))) [c60033] | 1 (#2694) |
1.00373488548773909104767959507 | JacobiTheta(3, 0, Mul(2, ConstI)) [cf3c8e] Mul(Brackets(Div(Sqrt(Add(Sqrt(2), 2)), 2)), JacobiTheta(3, 0, ConstI)) [cf3c8e] | 1 (#2579) |
1.00407735619794433937868523851 | RiemannZeta(8) [e93ca8 7cb17f] Mul(Div(1, 9450), Pow(Pi, 8)) [7cb17f] | 2 (#448) |
1.00834927738192282683979754985 | RiemannZeta(7) [e93ca8] | 1 (#859) |
1.01734306198444913971451792979 | RiemannZeta(6) [9923b7 7cb17f e93ca8 3a5167 ef2c71] Mul(Div(1, 945), Pow(Pi, 6)) [7cb17f] | 5 (#192) |
1.02107885978609299143910338657 | Pow(ConstE, Sub(Div(3, 32), Div(ConstCatalan, Mul(4, Pi)))) [ce66a9] | 1 (#3230) |
1.02930223664349202878237180077 | Pow(2, Div(1, 24)) [8b7991] | 1 (#3225) |
1.03692775514336992633136548646 | RiemannZeta(5) [a5e52e 856317 e93ca8] | 3 (#288) |
1.04719755119659774615421446109 | Div(Pi, 3) [47acde 799742 3aed02 140815 c584c3 340936 3c833f 706783] Atan(Sqrt(3)) [706783] Im(Div(Mul(Pi, ConstI), 3)) [9aa62c 0c7de4 27b2c7 ec0054 0c8084] Arg(Exp(Div(Mul(Pi, ConstI), 3))) [0c7de4 ec0054 0c8084 9aa62c] 4 of 11 expressions shown | 15 (#79) |
1.05663132172362296430825650148 | Pow(Add(1, Sqrt(2)), Div(1, 16)) [0701dc] | 1 (#3020) |
1.05947111645824913533638359381 | Neg(Arg(CarlsonRC(1, -1))) [25435b] Neg(Arg(Sub(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), Mul(Div(Mul(Pi, Sqrt(2)), 4), ConstI)))) [25435b] | 1 (#1252) |
1.06301458127346494079991219149 | Abs(Add(Decimal("-0.8"), Mul(Decimal("0.7"), ConstI))) [3009a8] | 1 (#2725) |
1.06793798966739570226868782321 | CarlsonRD(0, 1, 2) [060366] CarlsonRJ(0, 1, 2, 2) [c05ed8] Re(CarlsonRD(0, -1, 1)) [2dcf0c] Re(CarlsonRJ(0, -1, 1, 1)) [62b0c4] 4 of 6 expressions shown | 4 (#242) |
1.06895933211559511342518437251 | Hypergeometric2F1(1, 1, Div(3, 2), Div(1, Pow(Mul(2, GoldenRatio), 2))) [42d727] | 1 (#1156) |
1.08232323371113819151600369654 | RiemannZeta(4) [e93ca8 7cb17f 8a9884 62de01] HurwitzZeta(4, 1) [2d4828] Div(Pow(Pi, 4), 90) [9bf21b 2d4828 33690e] Mul(Div(1, 90), Pow(Pi, 4)) [7cb17f] 4 of 6 expressions shown | 7 (#132) |
1.08586087978647216962688676282 | Neg(DigammaFunction(Div(3, 4))) [f93bae] Neg(Sub(Sub(Div(Pi, 2), ConstGamma), Mul(3, Log(2)))) [f93bae] | 1 (#3131) |
1.08643448375820089395625329579 | Sqrt(Sub(Mul(5, Sqrt(5)), 10)) [483e7e] | 1 (#2588) |
1.08643481121330801457531612151 | JacobiTheta(3, 0, ConstI) [390158 8356db f12e20 7d7c65 cb6c9c 72f583 2f3ed3 e2bc80 d15f11 4c8873 ... 10 of 29 shown] Div(Pow(Pi, Div(1, 4)), Gamma(Div(3, 4))) [d15f11] Div(Gamma(Div(1, 4)), Mul(Sqrt(2), Pow(Pi, Div(3, 4)))) [1403b5] 4 of 4 expressions shown | 29 (#44) |
1.09050773266525765920701065576 | Pow(2, Div(1, 8)) [dc507f] | 1 (#3241) |
1.09861228866810969139524523692 | Log(3) [177de7 98f642 a91f8d 45a969 967bbb d496b8] | 6 (#147) |
1.09862671345654217239465180427 | Mul(Pow(Sub(Sqrt(2), 1), Div(1, 12)), Pow(Add(Sqrt(3), 1), Div(1, 6))) [675f23] | 1 (#2689) |
1.09868411346780996603980119524 | Sqrt(Div(Add(Sqrt(2), 1), 2)) [4256f0 7f9273] | 2 (#687) |
1.10265779084358409902265299663 | Div(Mul(2, Sqrt(3)), Pi) [30a054] EisensteinE(2, Exp(Div(Mul(Mul(2, Pi), ConstI), 3))) [30a054] Re(EisensteinE(2, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)))) [30a054] | 1 (#3040) |
1.10714871779409050301706546018 | Arg(Add(1, Mul(2, ConstI))) [b58070] | 1 (#2641) |
1.11062653532614811717546877861 | Div(RiemannZeta(3), RiemannZeta(4)) [8a9884] | 1 (#2880) |
1.11072073453959156175397024752 | Re(CarlsonRC(-1, 1)) [7ea1ad] Div(Mul(Pi, Sqrt(2)), 4) [7ea1ad 25435b] Neg(Im(CarlsonRC(1, -1))) [25435b] Im(Mul(Div(Mul(Pi, Sqrt(2)), 4), ConstI)) [25435b] 4 of 6 expressions shown | 2 (#533) |
1.11599512024629941989204283891 | Pow(Add(2, Sqrt(3)), Div(1, 12)) [9ce413] | 1 (#2980) |
1.11646975004741041888956803120 | Pow(Add(1, Sqrt(2)), Div(1, 8)) [be2f32] | 1 (#3011) |
1.11803398874989484820458683437 | Div(Sqrt(5), 2) [d0d91a ae9d30 223ce1] Abs(Add(1, Div(ConstI, 2))) [583bf9 324483] Sum(Div(1, Add(Fibonacci(Add(Mul(2, n), 1)), 1)), For(n, 0, Infinity)) [ae9d30] | 5 (#193) |
1.12500000000000000000000000000 | Div(9, 8) [ce66a9 dc507f] | 2 (#733) |
1.12782479158358808330227678603 | Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), Div(1, 2), Div(1, 4)) [3d276b] | 1 (#1147) |
1.12807619566762311199598213065 | Pow(AGM(1, Sqrt(2)), Div(2, 3)) [dabb47] | 1 (#1139) |
1.12837916709551257389615890312 | Div(2, Sqrt(Pi)) [fae9d3 b5bd5d 2aaba8 36ef64 622772] | 5 (#223) |
1.13033070075390631147707369136 | Div(Sub(Add(Log(Mul(2, Pi)), 1), ConstGamma), 2) [a5d65f 64bd32] | 2 (#660) |
1.13314845306682631682900722781 | Exp(Div(1, 8)) [8b7991] | 1 (#3226) |
1.14472988584940017414342735135 | Log(Pi) [47acde] | 1 (#742) |
1.14720269043987708947305861354 | Pow(3, Div(1, 8)) [204acd e3e4c5] | 2 (#714) |
1.14779357469631903701714902459 | CarlsonRG(1, 1, 2) [4d7098] Add(Div(Sqrt(2), 2), Div(Log(Add(1, Sqrt(2))), 2)) [4d7098] | 1 (#1256) |
1.15257199721566751804014986261 | Arg(Add(Div(1, 3), Mul(Div(3, 4), ConstI))) [9b868d c2c002 d3b45d e2035a] | 4 (#269) |
1.15443132980306572121302418016 | Mul(2, ConstGamma) [70a705 bf533f] | 2 (#662) |
1.16124679764398544630232791205 | Add(Div(Pow(Pi, 2), 16), Div(Mul(Pi, Log(2)), 4)) [997777] | 1 (#3120) |
1.16635223719079738231131985116 | Mul(Pow(2, Div(1, 24)), Exp(Div(1, 8))) [8b7991] | 1 (#3224) |
1.16666666666666666666666666667 | Div(7, 6) [588889 aed6bd] BernoulliB(14) [aed6bd] | 2 (#472) |
1.17809724509617246442349126873 | Div(Mul(3, Pi), 8) [be0f54 4d2c10 397051 c6c92a] Atan(Add(Sqrt(2), 1)) [c6c92a] Integral(Pow(Sinc(x), 3), For(x, 0, Infinity)) [be0f54] | 4 (#232) |
1.18033988749894848204586834366 | Sub(Mul(5, Sqrt(5)), 10) [483e7e] | 1 (#2589) |
1.18132917733080410763192499965 | Pow(ConstE, Add(Div(3, 32), Div(ConstCatalan, Mul(4, Pi)))) [dc507f] | 1 (#3236) |
1.18235564338601818742782903477 | Pow(Add(Sqrt(3), 1), Div(1, 6)) [675f23] | 1 (#2691) |
1.18479035305177960913516664278 | Div(Add(1, Pow(2, Neg(Div(1, 4)))), Sqrt(Add(1, Sqrt(2)))) [7f9273] | 1 (#2578) |
1.18603775376791329927364698398 | KeiperLiLambda(Pow(10, 2)) [706f66] | 1 (#976) |
1.18920711500272106671749997056 | Pow(2, Div(1, 4)) [4256f0 f12e20 be2f32 4b040d 0701dc e2bc80] | 6 (#157) |
1.19217185315340732515036933329 | Pow(Add(4, Mul(3, Sqrt(2))), Div(1, 12)) [324483] | 1 (#2637) |
1.19814023473559220743992249228 | AGM(1, Sqrt(2)) [0d9352 7b362f dabb47] Div(1, Pow(JacobiTheta(4, 0, ConstI), 2)) [7b362f] Div(Mul(2, Sqrt(2), Pow(Pi, Div(3, 2))), Pow(Gamma(Div(1, 4)), 2)) [0d9352] | 3 (#304) |
1.20000000000000000000000000000 | Decimal("1.2") [b3d435] | 1 (#1303) |
1.20093695517600272667546538735 | Pow(3, Div(1, 6)) [fba07c 9a8d4d] | 2 (#663) |
1.20205690315959428539973816151 | RiemannZeta(3) [d6703a e93ca8 45267a 3a5167 39ce44 ef2c71 856317 8a9884 b347d3 9923b7 ... 10 of 28 shown] HurwitzZeta(3, 1) [b4ed44] MultiZetaValue(2, 1) [345c26] Sum(Div(HarmonicNumber(n), Pow(Add(n, 1), 2)), For(n, 1, Infinity)) [345c26] 4 of 5 expressions shown | 28 (#45) |
1.20710678118654752440084436210 | Div(Add(Sqrt(2), 1), 2) [4256f0 7f9273] | 2 (#688) |
1.20919957615614523372938550509 | Hypergeometric2F1(1, 1, Div(3, 2), Div(1, 4)) [2806fd] | 1 (#1150) |
1.20942920288818881364213301532 | Arg(Add(1, Mul(Sqrt(7), ConstI))) [29c095] Arg(Mul(Div(1, 2), Add(1, Mul(Sqrt(7), ConstI)))) [29c095] | 1 (#2895) |
1.21401383023291550965660883723 | Neg(Arg(CarlsonRD(0, -1, 1))) [2dcf0c] Neg(Arg(CarlsonRJ(0, -1, 1, 1))) [62b0c4] Neg(Arg(Sub(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI)), Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))))) [62b0c4 2dcf0c] | 2 (#548) |
1.21741893010517288504551506019 | Neg(Re(CarlsonRD(1, -1, -1))) [3047b1] Neg(Re(CarlsonRJ(1, -1, -1, -1))) [303827] Neg(Sub(Neg(Div(3, 4)), Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 8))) [303827 3047b1] Neg(Re(Add(Sub(Neg(Div(3, 4)), Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 8)), Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 16)))) [303827 3047b1] | 2 (#553) |
1.22405354330465523913216021683 | Pow(2, Div(7, 24)) [324483] | 1 (#2639) |
1.22541670246517764512909830336 | Gamma(Div(3, 4)) [63ba30 d15f11] | 2 (#495) |
1.22794717729951567994122538571 | Log(Add(2, Sqrt(2))) [8c368f] | 1 (#3143) |
1.23606797749978969640917366873 | Sub(Sqrt(5), 1) [344963] | 1 (#1465) |
1.24645048028046102678804016050 | Mul(Sqrt(2), Log(Add(1, Sqrt(2)))) [7ea1ad 25435b] Div(Sub(Log(Add(2, Sqrt(2))), Log(Sub(2, Sqrt(2)))), Sqrt(2)) [8c368f] | 3 (#321) |
1.24650470277092709705231034263 | Pow(Add(Sqrt(2), 1), Div(1, 4)) [3fb309 8c4ab4 2f3ed3 6cbce8 dd5f43] Pow(Add(1, Sqrt(2)), Div(1, 4)) [3a56d8] | 6 (#186) |
1.24904577239825442582991707728 | Arg(Add(Div(1, 4), Mul(Div(3, 4), ConstI))) [c4febd 80f43a 0ce854 fa8e96] | 4 (#267) |
1.25000000000000000000000000000 | Div(5, 4) [669765 3b175b 675f23] | 3 (#337) |
1.25506000000000000000000000000 | Decimal("1.25506") [5258c0] | 1 (#2728) |
1.25663706143591729538505735331 | Div(Mul(2, Pi), 5) [47acde] Im(Div(Mul(Mul(2, Pi), ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 2 (#432) |
1.25992104989487316476721060728 | Pow(2, Div(1, 3)) [40a376] | 1 (#1242) |
1.26246714845634330527782948586 | Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), Div(1, 2), Div(1, 2)) [488a30] | 1 (#1142) |
1.26551212348464539648894579713 | Div(Log(Mul(4, Pi)), 2) [d8d820] | 1 (#2514) |
1.27081962719096862990974868522 | Abs(Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [62b0c4 2dcf0c] | 2 (#549) |
1.27122987841870623913561299102 | Re(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4)))) [0abbe1] Re(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4)))) [175b7a] | 2 (#522) |
1.27323954473516268615107010698 | Im(Div(Mul(4, ConstI), Pi)) [38b4f3] Neg(Im(Neg(Div(Mul(4, ConstI), Pi)))) [38b4f3] Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), 1, 1) [c6c108] | 2 (#496) |
1.27352502208959144560137358847 | Arg(Add(Log(GoldenRatio), Mul(Mul(Div(1, 2), Pi), ConstI))) [c4d78a] | 1 (#1464) |
1.27362092087246188502596557114 | Abs(CarlsonRC(-1, 1)) [7ea1ad] Abs(CarlsonRC(1, -1)) [25435b] Abs(Sub(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), Mul(Div(Mul(Pi, Sqrt(2)), 4), ConstI))) [25435b] Abs(Sub(Div(Mul(Pi, Sqrt(2)), 4), Mul(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), ConstI))) [7ea1ad] | 2 (#534) |
1.27795355506632113942244292240 | Arg(Add(1, Mul(Sqrt(11), ConstI))) [a498dd] Arg(Mul(Div(1, 2), Add(1, Mul(Sqrt(11), ConstI)))) [a498dd] | 1 (#2897) |
1.28125000000000000000000000000 | Div(41, 32) [be2f32] | 1 (#3008) |
1.28242712910062263687534256887 | ConstGlaisher [ce66a9 4a3612 dc507f b64782 3544a0 6f8e14 8b7991 ea26d4 6395ee] | 9 (#120) |
1.28539816339744830961566084582 | CarlsonRG(1, 2, 2) [d51efc] Add(Div(Pi, 4), Div(1, 2)) [d51efc] | 1 (#1258) |
1.28700221758656877360561845743 | Mul(4, Atan(Div(1, 3))) [7ce79e cbf396] | 2 (#486) |
1.28860783245076643030325604504 | Add(Div(ConstGamma, 2), 1) [d8d820] | 1 (#2512) |
1.29683955465100966593375411779 | Pow(2, Div(3, 8)) [87e9ed] | 1 (#2977) |
1.30171033868790805775959434739 | Mul(Div(Add(1, Pow(2, Neg(Div(1, 4)))), Sqrt(Add(1, Sqrt(2)))), Sqrt(Div(Add(Sqrt(2), 1), 2))) [7f9273] | 1 (#2577) |
1.30656296487637652785664317343 | Mul(Sqrt(Div(Add(Sqrt(2), 1), 2)), Pow(2, Div(1, 4))) [4256f0] | 1 (#2573) |
1.30899693899574718269276807637 | Div(Mul(5, Pi), 12) [b0049f] Atan(Add(2, Sqrt(3))) [b0049f] | 1 (#1222) |
1.31102877714605990523241979495 | EllipticK(-1) [afb22a] Re(EllipticK(2)) [630eca] CarlsonRF(0, 1, 2) [28237a] Neg(Im(EllipticK(2))) [630eca] 4 of 16 expressions shown | 9 (#116) |
1.31607401295249246081921890180 | Pow(3, Div(1, 4)) [40a376 175b7a 0abbe1] Abs(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4)))) [0abbe1] Abs(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4)))) [175b7a] | 3 (#313) |
1.31695789692481670862504634731 | Log(Add(2, Sqrt(3))) [c584c3 0bd544] IncompleteEllipticF(Div(Pi, 3), 1) [c584c3] | 2 (#526) |
1.31823441578658847240234081665 | Neg(DigammaFunction(Div(2, 3))) [45a969] Neg(Sub(Sub(Div(Mul(Sqrt(3), Pi), 6), ConstGamma), Div(Mul(3, Log(3)), 2))) [45a969] | 1 (#3127) |
1.32287565553229529525080787682 | Im(Mul(Div(1, 2), Add(1, Mul(Sqrt(7), ConstI)))) [29c095] | 1 (#2894) |
1.32292975258947110973326563952 | Pow(ConstGlaisher, Div(9, 8)) [ce66a9 dc507f] | 2 (#732) |
1.32581766366803246505923921043 | Arg(Add(1, Mul(4, ConstI))) [6cbce8] | 1 (#2643) |
1.32800000000000000000000000000 | Decimal("1.328") [87d19b] | 1 (#3115) |
1.33133536380038971279753491795 | Pow(Pi, Div(1, 4)) [dc507f d15f11 8b7991] | 3 (#426) |
1.33333333333333333333333333333 | Div(4, 3) [bd319e ef2c71 01bbb6 e3e4c5 dabb47] | 5 (#198) |
1.34304585480641639555823937436 | Add(Add(Div(Pi, 8), Div(ConstGamma, 4)), Div(Log(Mul(8, Pi)), 4)) [7783f9] | 1 (#2504) |
1.34528292089676540295899937374 | Arg(Add(1, Mul(Sqrt(19), ConstI))) [3ee358] Arg(Mul(Div(1, 2), Add(1, Mul(Sqrt(19), ConstI)))) [3ee358] | 1 (#2899) |
1.35064388104767550252017473534 | EllipticE(Div(1, 2)) [3b272e] Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Pi))), Div(Pow(Pi, Div(3, 2)), Pow(Gamma(Div(1, 4)), 2))) [2573ba 3b272e 9f3474] | 3 (#309) |
1.35345968080494151770868716918 | Neg(StieltjesGamma(1, Div(1, 2))) [70a705] Neg(Sub(Sub(StieltjesGamma(1), Mul(Mul(2, ConstGamma), Log(2))), Pow(Log(2), 2))) [70a705] | 1 (#2516) |
1.35411793942640041694528802815 | Gamma(Div(2, 3)) [2371b9 9a8d4d 693cfe] | 3 (#303) |
1.35645741597926551961935723972 | Mul(Div(4, 3), RiemannZeta(6)) [ef2c71] | 1 (#3174) |
1.37395364745808910177665574775 | Pow(2, Div(11, 24)) [5384f3] | 1 (#2651) |
1.37989254635111470625660481296 | Pow(Gamma(Div(1, 4)), Div(1, 4)) [dc507f] | 1 (#3238) |
1.38022677676591517243205433237 | CarlsonRJ(0, 1, 1, 2) [522f54] Div(Mul(3, Pi), Add(4, Mul(2, Sqrt(2)))) [522f54] | 1 (#1259) |
1.38629436111989061883446424292 | Log(4) [d496b8] Mul(2, Log(2)) [177de7 5df909 2e40b8 89bed3 967bbb] Neg(Neg(Mul(2, Log(2)))) [89bed3] | 6 (#148) |
1.39055600797602893882538776040 | CarlsonRJ(0, 1, 2, Sqrt(2)) [7f8a58] Re(CarlsonRJ(0, 1, 2, Sqrt(2))) [7f8a58] Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))) [7f8a58] | 1 (#1263) |
1.39570698271822960653116170677 | Div(Pow(Gamma(Div(1, 3)), Div(3, 2)), Pi) [e3e4c5] | 1 (#3028) |
1.40000000000000000000000000000 | Decimal("1.4") [855201] | 1 (#1088) |
1.40564764938026978095219340200 | Arg(Add(1, Mul(6, ConstI))) [5384f3] | 1 (#2645) |
1.41421356237309504880168872421 | Sqrt(2) [81c491 e30d7e 4b040d 9d5b81 2f3ed3 f9190b 8c368f 9f2b18 c6c92a dabb47 ... 10 of 94 shown] Pow(2, Div(1, 2)) [7f9273] Abs(Add(1, ConstI)) [62b0c4 78131f fe2627 b468f3 69d0a3 078869 0ad836 9e30e7 4c8873 e54e61 ... 10 of 14 shown] Abs(Sub(1, ConstI)) [630eca 62b0c4 f1dd8a 2dcf0c 5174ea e54e61 7c50d1 8519dd] 4 of 12 expressions shown | 105 (#15) |
1.41893853320467274178032973641 | Div(Add(Log(Mul(2, Pi)), 1), 2) [5babc2 af31ae] | 2 (#734) |
1.41946368981768087981844171960 | Arg(Add(1, Mul(Sqrt(43), ConstI))) [5b108e] Arg(Mul(Div(1, 2), Add(1, Mul(Sqrt(43), ConstI)))) [5b108e] | 1 (#2901) |
1.41949548808376612336218673135 | JacobiTheta(3, 0, Div(ConstI, 2)) [4256f0] Mul(Brackets(Mul(Sqrt(Div(Add(Sqrt(2), 1), 2)), Pow(2, Div(1, 4)))), JacobiTheta(3, 0, ConstI)) [4256f0] | 1 (#2572) |
1.43989663289532190096204488400 | Arg(Mul(Div(Mul(ConstI, Sqrt(3)), 6), DedekindEta(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))))) [4af6db] | 1 (#3033) |
1.44224957030740838232163831078 | Pow(3, Div(1, 3)) [807917] | 1 (#2525) |
1.44494079843363423391368507881 | Pow(RiemannZeta(3), 2) [ef2c71 3a5167] | 2 (#729) |
1.44644133224813518419996684248 | Arg(Add(1, Mul(8, ConstI))) [e2bc80] | 1 (#2655) |
1.44922930492396720811979387512 | Arg(Add(1, Mul(Sqrt(67), ConstI))) [951017] Arg(Mul(Div(1, 2), Add(1, Mul(Sqrt(67), ConstI)))) [951017] | 1 (#2903) |
1.45183150899503893416033238889 | Mul(Pow(2, Div(1, 8)), Pow(Pi, Div(1, 4))) [dc507f] | 1 (#3240) |
1.45227561451787356907336048301 | Pow(ConstGlaisher, Div(3, 2)) [8b7991] | 1 (#3228) |
1.45576289226870932246242200360 | EisensteinE(4, ConstI) [53fcdd] Div(Mul(3, Pow(Gamma(Div(1, 4)), 8)), Mul(64, Pow(Pi, 6))) [53fcdd] | 1 (#3043) |
1.46035450880958681288949915252 | Neg(RiemannZeta(Div(1, 2))) [7783f9] | 1 (#2502) |
1.46036211675311954767977573949 | Add(Div(Mul(Pi, Log(2)), 4), ConstCatalan) [5c9675] | 1 (#1193) |
1.46163214496836234126265954233 | DigammaFunctionZero(0) [3c4f5f 4fdf65 950e5a] Decimal("1.46163214496836234126265954233") [1bbbc7] | 4 (#227) |
1.46746220933942715545979526699 | EllipticE(Div(1, 4)) [eba27c] | 1 (#1249) |
1.47112767430373459185287557176 | Arg(Add(1, Mul(10, ConstI))) [390158] | 1 (#2667) |
1.47514928425228182064740210351 | Abs(CarlsonRD(1, -1, -1)) [3047b1] Abs(CarlsonRJ(1, -1, -1, -1)) [303827] Abs(Add(Sub(Neg(Div(3, 4)), Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 8)), Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 16))) [303827 3047b1] | 2 (#555) |
1.48411534701864178590355121890 | Neg(Sub(Neg(Div(Mul(Sqrt(3), Pi), 6)), ConstGamma)) [98f642] | 1 (#3126) |
1.48490749084308865181585592160 | Div(Mul(16, ConstCatalan), Pow(Pi, 2)) [86d68c] | 1 (#2719) |
1.48765509490645538932065337699 | Arg(Add(1, Mul(12, ConstI))) [675f23] | 1 (#2677) |
1.49262987072393104272887688915 | Arg(Add(1, Mul(Sqrt(163), ConstI))) [1cb24e] Arg(Mul(Div(1, 2), Add(1, Mul(Sqrt(163), ConstI)))) [1cb24e] | 1 (#2908) |
1.49534878122122054191189899414 | Pow(5, Div(1, 4)) [390158] | 1 (#2672) |
1.50000000000000000000000000000 | Div(3, 2) [4c0698 c6d6e2 fb7a63 42d727 72b5bd f9190b 9f2b18 4e4380 2806fd 3e71f4 ... 10 of 96 shown] Neg(Neg(Div(3, 2))) [1faf7a c85c2f 37ffb7 e93f43 618a9f 4e4380 771801 de8485 4c882a d4b12e ... 10 of 23 shown] Decimal("1.5") [8e06be 0c8084 ff0c9f 3009a8 9136b9] Neg(Decimal("-1.5")) [3009a8 0c8084 ff0c9f] 4 of 4 expressions shown | 101 (#16) |
1.50980364847710499960519835468 | Pow(3, Div(3, 8)) [669765 5384f3 f12e20 9ce413] | 4 (#272) |
1.51668277295919927155532738955 | Pow(Parentheses(28), Div(1, 8)) [72f583] | 1 (#2615) |
1.52525000621616117128338445874 | Arg(DigammaFunction(ConstI)) [3ac0ce] | 1 (#1181) |
1.53543719532343052712146005510 | Arg(RiemannZetaZero(1)) [945fa5] | 1 (#1787) |
1.54221082540794082361229186209 | Pow(2, Div(5, 8)) [0701dc] Neg(Neg(Pow(2, Div(5, 8)))) [0701dc] | 1 (#3023) |
1.54368663391782125453009350113 | EllipticK(Sub(Mul(4, Sqrt(3)), 7)) [b95ffa] Re(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))) [0abbe1] Re(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2))) [175b7a] Div(Mul(Sqrt(Add(3, Mul(2, Sqrt(3)))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(10, 3)), Pi)) [b95ffa] 4 of 6 expressions shown | 3 (#310) |
1.54701624853656736362128011783 | Arg(RiemannZetaZero(2)) [c0ae99] | 1 (#1790) |
1.54798240215774230465607676775 | Integral(Div(x, Sinc(x)), For(x, 0, Div(Pi, 2))) [4a5b9a] Sub(Mul(Mul(2, Pi), ConstCatalan), Div(Mul(7, RiemannZeta(3)), 2)) [4a5b9a] | 1 (#1189) |
1.55113351807124504547618699533 | Pow(Add(2, Sqrt(3)), Div(1, 3)) [6ade92] | 1 (#2628) |
1.55377397403003730734415895306 | Sqrt(Add(1, Sqrt(2))) [7f9273 0701dc] | 2 (#690) |
1.55908474975541123028979617846 | EllipticK(Div(Sub(4, Mul(3, Sqrt(2))), 8)) [4b040d] Div(Pow(Gamma(Div(1, 4)), 2), Mul(Mul(4, Pow(2, Div(1, 4))), Sqrt(Pi))) [4b040d] | 1 (#1231) |
1.57079632677179604650584089425 | Mul(Div(467807924713440738696537864469, 467807924720320453655260875000), Div(Pi, 2)) [af8328] | 1 (#1184) |
1.57079632679489661923132169164 | Asin(1) [722241] Acos(0) [3ff35f] Div(Pi, 2) [47acde 0b8fd6 8ef3d7 77e519 bfc13f 8bb972 efebb8 190843 8c368f 48910b ... 10 of 93 shown] Arg(ConstI) [735409] 4 of 31 expressions shown | 113 (#14) |
1.57349847316239045877828604369 | Neg(DigammaFunctionZero(2)) [950e5a] | 1 (#1047) |
1.57365623126437826646765877076 | EllipticK(Mul(Pow(Sub(2, Sqrt(3)), 2), Pow(Sub(Sqrt(2), Sqrt(3)), 2))) [799b5e] | 1 (#2711) |
1.57721566490153286060651209008 | Add(1, ConstGamma) [0ad263] Add(ConstGamma, 1) [54d4e2] | 2 (#735) |
1.58255172722371591183313507107 | CarlsonRF(0, 1, Sub(Mul(12, Sqrt(2)), 16)) [e30d7e] EllipticK(Pow(Sub(3, Mul(2, Sqrt(2))), 2)) [2991b5] Div(Mul(Add(2, Sqrt(2)), Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))) [2991b5 e30d7e] | 2 (#515) |
1.58542603940565431199321277020 | Pow(Add(Add(Sub(2, Mul(3, Sqrt(2))), Pow(3, Div(5, 4))), Pow(3, Div(3, 4))), Div(1, 3)) [675f23] | 1 (#2684) |
1.59450925266597699924405976997 | Pow(Add(Mul(2, Sqrt(3)), 3), Div(1, 4)) [52302f] | 1 (#2575) |
1.59576912160573071175978423974 | Div(Pow(2, Div(3, 2)), Sqrt(Pi)) [60ac50] | 1 (#1479) |
1.59814200211254014446096510539 | EllipticK(Sub(Div(1, 2), Div(Sqrt(3), 4))) [40a376] Abs(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2))) [175b7a] Abs(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))) [0abbe1] Div(Mul(Pow(3, Div(1, 4)), Pow(Gamma(Div(1, 3)), 3)), Mul(Mul(4, Pow(2, Div(1, 3))), Pi)) [40a376] 4 of 6 expressions shown | 3 (#311) |
1.60544870145830576761891457397 | Sum(Pow(Sinc(n), 7), For(n, Neg(Infinity), Infinity)) [4a1b00] Div(Add(Sub(Add(Sub(Add(Sub(Mul(129423, Pi), Mul(201684, Pow(Pi, 2))), Mul(144060, Pow(Pi, 3))), Mul(54880, Pow(Pi, 4))), Mul(11760, Pow(Pi, 5))), Mul(1344, Pow(Pi, 6))), Mul(64, Pow(Pi, 7))), 23040) [4a1b00] | 1 (#1198) |
1.60943791243410037460075933323 | Log(5) [d496b8] | 1 (#788) |
1.61185489773531287933000723506 | Div(Pow(3, Div(3, 4)), Sqrt(2)) [62ffb3] | 1 (#2993) |
1.61803398874989484820458683437 | GoldenRatio [d774fe e09458 31f52c 98a765 42d727 bceed4 050fdb 6d2709 0cd1a4 6a11ce ... 10 of 35 shown] Neg(Neg(GoldenRatio)) [24107d] Div(Add(1, Sqrt(5)), 2) [77d2f8] Mul(2, Cos(Div(Pi, 5))) [98a765] 4 of 11 expressions shown | 35 (#38) |
1.62621027512394421291621375435 | Mul(Pow(3, Div(1, 6)), Gamma(Div(2, 3))) [9a8d4d] | 1 (#2527) |
1.63010732658587081139833692024 | Mul(Pow(ConstE, Add(Div(3, 32), Div(ConstCatalan, Mul(4, Pi)))), Pow(Gamma(Div(1, 4)), Div(1, 4))) [dc507f] | 1 (#3235) |
1.63397459621556135323627682925 | Div(Sub(5, Sqrt(3)), 2) [62ffb3] | 1 (#2991) |
1.64285298211663908073058090174 | Abs(Add(Log(GoldenRatio), Mul(Mul(Div(1, 2), Pi), ConstI))) [c4d78a] | 1 (#1463) |
1.64493406684822643647241516665 | PolyLog(2, 1) [9206a3] RiemannZeta(2) [9923b7 a01b6e a5e52e 7cb17f 67bb53 e93ca8 856317] HurwitzZeta(2, 1) [575b8f] Div(Pow(Pi, 2), 6) [47acde a91200 ac8d3c a01b6e fa0292 babd3c 575b8f fbc53d] 4 of 9 expressions shown | 15 (#80) |
1.64791843300216453709286785538 | Div(Mul(3, Log(3)), 2) [45a969 98f642 177de7 967bbb] | 4 (#275) |
1.65289165028106948009824064659 | Sqrt(Add(Sqrt(3), 1)) [f12e20] | 1 (#2584) |
1.65831239517769992455746636834 | Im(Mul(Div(1, 2), Add(1, Mul(Sqrt(11), ConstI)))) [a498dd] | 1 (#2896) |
1.66608110180938734263095537127 | Neg(Re(CarlsonRD(1, 1, -1))) [545e8b] Neg(Im(CarlsonRJ(1, 1, 1, -1))) [e04867] Neg(Im(CarlsonRJ(1, -1, -1, 1))) [4c1db8] Neg(Re(CarlsonRJ(1, 1, -1, -1))) [534335] 4 of 9 expressions shown | 4 (#247) |
1.66666666666666666666666666667 | Div(5, 3) [4d65e5 20e530 588889] | 3 (#424) |
1.68179283050742908606225095247 | Pow(8, Div(1, 4)) [e2bc80] | 1 (#2664) |
1.68493350423050837405780401944 | Mul(Pow(3, Div(3, 8)), Pow(Add(2, Sqrt(3)), Div(1, 12))) [9ce413] | 1 (#2979) |
1.68575035481259604287120365780 | EllipticK(Div(1, 4)) [aac129 eba27c] | 2 (#527) |
1.68809768191848642067406324969 | Pow(Add(Add(Add(16, Mul(15, Pow(2, Div(1, 4)))), Mul(12, Sqrt(2))), Mul(9, Pow(8, Div(1, 4)))), Div(1, 8)) [e2bc80] | 1 (#2658) |
1.70558135173819223605259053276 | Add(Sub(2, Mul(3, Sqrt(2))), Pow(3, Div(5, 4))) [675f23] | 1 (#2686) |
1.71879645450509320687252394495 | Div(Pow(Gamma(Div(1, 4)), 4), Mul(32, Pi)) [67e015 8519dd] Neg(Div(Neg(Pow(Gamma(Div(1, 4)), 4)), Mul(32, Pi))) [8519dd] | 2 (#536) |
1.72787595947438628115445386080 | Div(Mul(11, Pi), 20) [b894a3] Sum(Pow(Sinc(n), 6), For(n, Neg(Infinity), Infinity)) [b894a3] | 1 (#1196) |
1.73205080756887729352744634151 | Sqrt(3) [98f642 8356db 7697af f12e20 e3e4c5 9d5b81 967bbb 30a054 9ea739 68b73d ... 10 of 55 shown] Im(Mul(Sqrt(3), ConstI)) [21b67f 175b7a 0abbe1 e3e4c5] Im(Mul(ConstI, Sqrt(3))) [4af6db] Im(Add(1, Mul(Sqrt(3), ConstI))) [0abbe1] 4 of 8 expressions shown | 56 (#23) |
1.73233035889803357021221785710 | JacobiTheta(3, 0, Div(ConstI, 3)) [52302f] Mul(Brackets(Pow(Add(Mul(2, Sqrt(3)), 3), Div(1, 4))), JacobiTheta(3, 0, ConstI)) [52302f] | 1 (#2574) |
1.73639985871871507790979516836 | Hypergeometric2F1(1, 1, Div(1, 2), Div(1, 4)) [826257] | 1 (#1145) |
1.75625216037329948311216061938 | Pow(2, Div(13, 16)) [3a56d8] | 1 (#2983) |
1.75932784950901143303710761145 | Abs(CarlsonRD(1, 1, -1)) [545e8b] Abs(CarlsonRJ(1, 1, 1, -1)) [e04867] Abs(CarlsonRJ(1, 1, -1, -1)) [534335] Abs(CarlsonRJ(1, -1, -1, 1)) [4c1db8] 4 of 6 expressions shown | 4 (#248) |
1.76132536350967537270755948489 | Pow(Mul(2, Add(Sqrt(3), 1)), Div(1, 3)) [8356db] | 1 (#2619) |
1.76274717403908605046521864996 | Mul(2, Log(Add(1, Sqrt(2)))) [54c80d] Log(Add(3, Mul(2, Sqrt(2)))) [fe4967] Sub(Log(Add(2, Sqrt(2))), Log(Sub(2, Sqrt(2)))) [8c368f] Integral(Mul(JacobiTheta(2, 0, Mul(ConstI, t)), JacobiTheta(4, 0, Mul(ConstI, t))), For(t, 0, Infinity)) [fe4967] | 3 (#302) |
1.76562500000000000000000000000 | Div(113, 64) [0701dc] | 1 (#3017) |
1.77245385090551602729816748334 | Sqrt(Pi) [fae9d3 47acde cc22bf e30d7e b5bd5d 4b040d e1797b 2aaba8 1eaaed 6582c4 ... 10 of 35 shown] Gamma(Div(1, 2)) [8fab22 f826a6] 3 of 3 expressions shown | 36 (#36) |
1.78107241799019798523650410311 | Exp(ConstGamma) [86fcf1 3142ec 433a5c 288da1] SequenceLimit(Mul(Div(1, Log(PrimeNumber(N))), Product(Div(PrimeNumber(n), Sub(PrimeNumber(n), 1)), For(n, 1, N))), For(N, Infinity)) [288da1] | 4 (#228) |
1.78539816339744830961566084582 | Hypergeometric2F1(Neg(Div(1, 2)), 1, Div(1, 2), -1) [f55b36] Mul(Sqrt(2), Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), Div(1, 2), Div(1, 2))) [488a30] | 2 (#497) |
1.79161660391292943980255665869 | Arg(PolyLog(2, ConstI)) [1d65c2 208da7] Arg(Add(Neg(Div(Pow(Pi, 2), 48)), Mul(ConstCatalan, ConstI))) [208da7] | 2 (#506) |
1.79175946922805500081247735838 | Log(6) [d496b8] | 1 (#789) |
1.79546924102604045659040514990 | Mul(Pow(2, Div(1, 4)), Pow(3, Div(3, 8))) [f12e20] | 1 (#2585) |
1.79721035210338831115988373842 | CarlsonRD(0, 2, 1) [63644d] CarlsonRJ(0, 1, 2, 1) [9f2b18] Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Pow(Gamma(Div(1, 4)), 2)) [63644d 9f2b18] | 2 (#544) |
1.81264355358364351172924904416 | Pow(Add(Add(1, Sqrt(3)), Mul(Sqrt(2), Pow(Parentheses(27), Div(1, 4)))), Div(1, 3)) [5384f3] | 1 (#2647) |
1.81379936423421785059407825764 | Sub(Mul(Div(9, 2), Hypergeometric2F1(1, 1, Div(1, 2), Div(1, 4))), 6) [826257] | 1 (#1143) |
1.82451515740692456814215840627 | Sum(Div(1, Fibonacci(Add(Mul(2, n), 1))), For(n, 0, Infinity)) [da1873] Where(Mul(Div(Sqrt(5), 4), Pow(JacobiTheta(2, 0, tau), 2)), Equal(tau, Mul(Div(1, Mul(Pi, ConstI)), Log(Div(Sub(3, Sqrt(5)), 2))))) [da1873] | 1 (#1466) |
1.83193118835443803010920702986 | Mul(2, ConstCatalan) [c2976e] Integral(Div(1, Sinc(x)), For(x, 0, Div(Pi, 2))) [c2976e] | 1 (#1188) |
1.83400808640934246348708318959 | Pow(2, Div(7, 8)) [390158] | 1 (#2669) |
1.83787706640934548356065947281 | Log(Mul(2, Pi)) [37a95a a5d65f 0ad263 47acde af31ae 8c96a5 a54fb0 95f771 b64782 2398a1 ... 10 of 20 shown] 2 of 2 expressions shown | 20 (#64) |
1.84089641525371454303112547623 | Add(1, Pow(2, Neg(Div(1, 4)))) [7f9273 95e9e4] Mul(Mul(Div(Add(1, Pow(2, Neg(Div(1, 4)))), Sqrt(Add(1, Sqrt(2)))), Sqrt(Div(Add(Sqrt(2), 1), 2))), Pow(2, Div(1, 2))) [7f9273] | 2 (#689) |
1.84775906502257351225636637879 | Sqrt(Add(Sqrt(2), 2)) [cf3c8e] | 1 (#2581) |
1.85193705198246617036105337016 | Integral(Sinc(x), For(x, 0, Pi)) [81f531] | 1 (#1084) |
1.85407467730137191843385034720 | Abs(EllipticK(2)) [630eca] EllipticK(Div(1, 2)) [cc22bf] Abs(CarlsonRF(0, 1, -1)) [f1dd8a] EllipticPi(0, Div(1, 2)) [3c4979] 4 of 9 expressions shown | 7 (#135) |
1.85459043600322446485702492584 | Mul(4, Atan(Div(1, 2))) [5278da cbf396] | 2 (#485) |
1.87243664726242981711885334944 | Neg(Arg(Gamma(ConstI))) [9c93bb] | 1 (#1175) |
1.88168309980638657512085410978 | Div(Mul(115, Pi), 192) [0c847f] Sum(Pow(Sinc(n), 5), For(n, Neg(Infinity), Infinity)) [0c847f] | 1 (#1194) |
1.88495559215387594307758602997 | Div(Mul(3, Pi), 5) [47acde] Im(Div(Mul(Mul(3, Pi), ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 2 (#433) |
1.89288278671933681938217424173 | Sqrt(Add(-7, Mul(4, Sqrt(7)))) [7cc3d3] | 1 (#3001) |
1.89783232084312411915829478547 | Neg(Arg(CarlsonRJ(1, 1, 1, -1))) [e04867] Neg(Arg(CarlsonRJ(1, -1, -1, 1))) [4c1db8] Neg(Arg(Sub(Sub(Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 4), Div(3, 2)), Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 8)))) [4c1db8 e04867] | 2 (#551) |
1.89885000000000000000000000000 | Decimal("1.898850") [1c770c] | 1 (#3246) |
1.90211303259030714423287866676 | Sqrt(Add(GoldenRatio, 2)) [42d727] | 1 (#1154) |
1.90985931710274402922660516047 | Im(Div(Mul(6, ConstI), Pi)) [7f4c85] | 1 (#3035) |
1.91009889451385600895238104109 | EllipticE(-1) [9f3474] IncompleteEllipticE(Div(Pi, 2), -1) [2573ba] Mul(Sqrt(2), Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Pi))), Div(Pow(Pi, Div(3, 2)), Pow(Gamma(Div(1, 4)), 2)))) [2573ba 9f3474] | 2 (#514) |
1.92067109899640535715210009140 | Mul(Mul(Pow(2, Div(1, 8)), Pow(Pi, Div(1, 4))), Pow(ConstGlaisher, Div(9, 8))) [dc507f] | 1 (#3239) |
1.92586400000000000000000000000 | Decimal("1.925864") [306699] | 1 (#3248) |
1.93223533523637534177558663262 | Gamma(Div(11, 24)) [c60033] | 1 (#2704) |
1.93346588359258774007721231014 | Mul(Pow(Pi, Div(1, 4)), Pow(ConstGlaisher, Div(3, 2))) [8b7991] | 1 (#3227) |
1.94359643682075920505707036257 | Div(Mul(RiemannZeta(2), RiemannZeta(3)), RiemannZeta(6)) [9923b7] SequenceLimit(Mul(Div(1, Log(N)), Sum(Div(1, Totient(n)), For(n, 1, N))), For(N, Infinity)) [9923b7] | 1 (#3076) |
1.94591014905531330510535274344 | Log(7) [d496b8] | 1 (#790) |
1.95797309110151839571981887015 | Pow(6, Div(3, 8)) [62ffb3] | 1 (#2988) |
1.96351002602142347944097633300 | Neg(DigammaFunction(Div(1, 2))) [89bed3] Neg(Sub(Neg(Mul(2, Log(2))), ConstGamma)) [89bed3] | 1 (#3124) |
1.96654316571908985784862969242 | Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))) [62b0c4 2dcf0c] Div(Mul(Mul(3, Sqrt(2)), Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))) [c05ed8 060366] Re(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI))) [62b0c4 2dcf0c] Neg(Im(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI)))) [62b0c4 2dcf0c] | 4 (#243) |
1.96931908258470049538129517342 | Mul(Mul(Pow(2, Div(11, 24)), Pow(3, Div(3, 8))), Pow(Sub(Sqrt(3), 1), Div(1, 6))) [5384f3] | 1 (#2649) |
1.97730435029729611819708544149 | Mul(RiemannZeta(2), RiemannZeta(3)) [9923b7] | 1 (#3077) |
1.97828505988837737709463579771 | HurwitzZeta(3, Div(5, 6)) [edad97] Sub(Mul(91, RiemannZeta(3)), Mul(Mul(2, Sqrt(3)), Pow(Pi, 3))) [edad97] | 1 (#1096) |
1.99253022912190477633055581323 | Mul(Sub(Pow(5, Div(1, 4)), 1), Sqrt(Add(Mul(5, Sqrt(5)), 5))) [390158] | 1 (#2670) |
2.00000000000000000000000000000 | 2 [569278 848d97 a891da 1eeccf bcdfc6 4b040d 42d727 a0ba58 d5917b dabb47 ... 10 of 1617 shown] Neg(-2) [d45548 89d93c 39b699 c4febd 8c9f96 210213 e47bfb e50a56 21851b 5c178f ... 10 of 27 shown] Sqrt(4) [9d5b81] Totient(4) [6d37c9] 4 of 26 expressions shown | 1617 (#3) |
2.00001394936942483598255871491 | JacobiTheta(3, 0, Div(ConstI, 4)) [7f9273] Mul(Brackets(Mul(Mul(Div(Add(1, Pow(2, Neg(Div(1, 4)))), Sqrt(Add(1, Sqrt(2)))), Sqrt(Div(Add(Sqrt(2), 1), 2))), Pow(2, Div(1, 2)))), JacobiTheta(3, 0, ConstI)) [7f9273] | 1 (#2576) |
2.07179676972449082589021463398 | Sub(9, Mul(4, Sqrt(3))) [44d300] | 1 (#1266) |
2.07440022977064900739949056948 | Mul(Pow(2, Div(11, 24)), Pow(3, Div(3, 8))) [5384f3] | 1 (#2650) |
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC