From Ordner, a catalog of real numbers in Fungrim.
This interval: [0.00000000000000000000000000000, 0.381966011250105151795413165634]
Next interval: [0.381966011250105151795413165634, 1.00000005960818905125947961244]
Decimal | Expression [entries] | Frequency |
---|---|---|
0.00000000000000000000000000000 | 0 [569278 671fcb f0d72c 1eeccf bcdfc6 c19cd6 2ea614 3df748 c3e340 a0ba58 ... 10 of 1718 shown] Sin(0) [c52772] Arg(1) [c423d2] Log(1) [d496b8 07731b] 4 of 79 expressions shown | 1719 (#2) |
9.67000000000000000000000000000e-52 | Decimal("9.67e-52") [66df95] | 1 (#2571) |
2.14000000000000000000000000000e-51 | Decimal("2.14e-51") [6a83ad] | 1 (#3116) |
2.51000000000000000000000000000e-51 | Decimal("2.51e-51") [5d4cce] | 1 (#1268) |
3.60000000000000000000000000000e-51 | Decimal("3.60e-51") [e876e8] | 1 (#1097) |
5.83000000000000000000000000000e-51 | Decimal("5.83e-51") [6505a9] | 1 (#1100) |
1.89000000000000000000000000000e-50 | Decimal("1.89e-50") [8697b8] | 1 (#2570) |
3.72000000000000000000000000000e-50 | Decimal("3.72e-50") [08fcaf] | 1 (#1169) |
2.19000000000000000000000000000e-49 | Decimal("2.19e-49") [c0ae99] | 1 (#1791) |
2.44000000000000000000000000000e-49 | Decimal("2.44e-49") [945fa5] | 1 (#1788) |
1.10000000000000000000000000000e-31 | Decimal("1.10e-31") [67f2ef] | 1 (#3059) |
1.51000000000000000000000000000e-31 | Decimal("1.51e-31") [61480c] | 1 (#1182) |
1.72000000000000000000000000000e-31 | Decimal("1.72e-31") [fba07c] | 1 (#2529) |
1.84000000000000000000000000000e-31 | Decimal("1.84e-31") [693cfe] | 1 (#2523) |
2.04000000000000000000000000000e-31 | Decimal("2.04e-31") [807917] | 1 (#2526) |
2.23735150380481508416601318018e-31 | Abs(Sub(Pi, Div(Log(Add(Pow(640320, 3), 744)), Sqrt(163)))) [fdc3a3] Neg(Sub(Pi, Div(Log(Add(Pow(640320, 3), 744)), Sqrt(163)))) [fdc3a3] | 1 (#1163) |
2.24000000000000000000000000000e-31 | Decimal("2.24e-31") [fdc3a3] | 1 (#1167) |
2.87000000000000000000000000000e-31 | Decimal("2.87e-31") [be9790] | 1 (#3061) |
3.09000000000000000000000000000e-31 | Decimal("3.09e-31") [b05f2b] | 1 (#1478) |
3.87000000000000000000000000000e-31 | Decimal("3.87e-31") [9a8d4d] | 1 (#2528) |
4.12000000000000000000000000000e-31 | Decimal("4.12e-31") [e010c9] | 1 (#1476) |
4.28000000000000000000000000000e-30 | Decimal("4.28e-30") [1bbbc7] | 1 (#1474) |
1.30018482300686367942812842625e-20 | Div(261082718496449122051, 20080431172289638826798401128390556640625) [7cb17f] | 1 (#1759) |
1.28323098514131433056124384731e-19 | Div(308420411983322, 2403467618492375776343276883984375) [7cb17f] | 1 (#1755) |
1.26649821787031741575893507954e-18 | Div(26315271553053477373, 20777977561866588586487628662044921875) [7cb17f] | 1 (#1752) |
1.24998363856104044899477139412e-17 | Div(151628697551, 12130454581433748587292890625) [7cb17f] | 1 (#1748) |
1.23368440225860373529498016134e-16 | Div(7709321041217, 62490220571022341207266406250) [7cb17f] | 1 (#1745) |
1.21759770145916843655609112676e-15 | Div(6892673020804, 5660878804669082674070015625) [7cb17f] | 1 (#1741) |
1.20172076666538530895459437638e-14 | Div(6785560294, 564653660170076273671875) [7cb17f] | 1 (#1737) |
1.18605087001168271475142410151e-13 | Div(1315862, 11094481976030578125) [7cb17f] | 1 (#1733) |
1.17058534099124419796047222656e-12 | Div(236364091, 201919571963756521875) [7cb17f] | 1 (#1730) |
1.15532162995013120482662733241e-11 | Div(155366, 13447856940643125) [7cb17f] | 1 (#1726) |
1.14025756022960914329319056284e-10 | Div(174611, 1531329465290625) [7cb17f] | 1 (#1723) |
1.12539232584044964271042139920e-9 | Div(43867, 38979295480125) [7cb17f] | 1 (#1720) |
1.11073043949898395380291842580e-8 | Div(3617, 325641566250) [7cb17f] | 1 (#1717) |
1.09629739259368888998518628148e-7 | Div(2, 18243225) [7cb17f] | 1 (#1714) |
2.66764189062422312368932886496e-7 | Abs(Sub(Pi, Div(355, 113))) [1e3a25] Neg(Sub(Pi, Div(355, 113))) [1e3a25] | 1 (#1161) |
2.67000000000000000000000000000e-7 | Decimal("2.67e-7") [1e3a25] | 1 (#1162) |
1.08220214040319860425680531501e-6 | Div(691, 638512875) [7cb17f] | 1 (#1712) |
9.05444437377355147627220194681e-6 | Atan(Div(1, 110443)) [8332d8] | 1 (#1126) |
9.05444437402098820205898065065e-6 | Div(1, 110443) [8332d8] | 1 (#1127) |
1.06888995777884666773555662445e-5 | Div(1, 93555) [7cb17f] | 1 (#1709) |
2.62770371099183366994665976305e-5 | StieltjesGamma(17) [e5bd3c] | 1 (#994) |
2.74638066037601588600076036934e-5 | Neg(StieltjesGamma(13)) [e5bd3c] | 1 (#990) |
3.43947744180880481779146237982e-5 | Neg(StieltjesGamma(9)) [e5bd3c] | 1 (#987) |
0.000100000000000000000000000000000 | Pow(10, -4) [1dec0d] | 1 (#2520) |
0.000104437769756000115810795674368 | StieltjesGamma(21) [e5bd3c] | 1 (#998) |
0.000105820105820105820105820105820 | Div(1, 9450) [7cb17f] | 1 (#1707) |
0.000167272912105140193353501543341 | StieltjesGamma(12) [e5bd3c] | 1 (#989) |
0.000199696858308969774707784563203 | Neg(StieltjesGamma(16)) [e5bd3c] | 1 (#993) |
0.000205332814909064794683722289237 | StieltjesGamma(10) [e5bd3c] StieltjesGamma(Pow(10, 1)) [569d5c] Decimal("0.00020533281490906479468372228923706530295985377416676") [e5bd3c 569d5c] | 2 (#468) |
0.000209209262059299945837139697345 | Neg(StieltjesGamma(14)) [e5bd3c] | 1 (#991) |
0.000238769345430199609872421841908 | Neg(StieltjesGamma(6)) [e5bd3c] | 1 (#984) |
0.000270184439543903526672902082068 | StieltjesGamma(11) [e5bd3c] | 1 (#988) |
0.000283000000000000000000000000000 | Decimal("0.000283") [f33f09] | 1 (#3057) |
0.000283468655320241446642934474997 | Neg(StieltjesGamma(15)) [e5bd3c] | 1 (#992) |
0.000288585565222547709172878017388 | Div(Mul(2, Sqrt(2)), 9801) [6b9f81] | 1 (#1133) |
0.000307368408149252826592754751949 | StieltjesGamma(18) [e5bd3c] | 1 (#995) |
0.000316055625790139064475347661188 | Div(1, 3164) [bd3faa] | 1 (#1129) |
0.000352123353803039509602052165001 | Neg(StieltjesGamma(8)) [e5bd3c] | 1 (#986) |
0.000434613329941130470861065693447 | Mul(48, Atan(Div(1, 110443))) [8332d8] | 1 (#1125) |
0.000442473061814620909930207608585 | Div(103663334225097487, 234281684403486720000) [0983d1] | 1 (#1300) |
0.000466343561511559449400594824434 | StieltjesGamma(20) [e5bd3c] | 1 (#997) |
0.000503605453047355629055596437717 | StieltjesGamma(19) [e5bd3c] | 1 (#996) |
0.000527289567057751046074097505479 | Neg(StieltjesGamma(7)) [e5bd3c] | 1 (#985) |
0.000541599582203997701655196173174 | Neg(StieltjesGamma(22)) [e5bd3c] | 1 (#999) |
0.000656803518637154431504773003356 | StieltjesGamma(26) [e5bd3c] | 1 (#1003) |
0.000672061631156136204002020043419 | Neg(Div(-500525573, 744761417400)) [0983d1] | 1 (#1297) |
0.000793323817301062701753334877444 | StieltjesGamma(5) [e5bd3c] | 1 (#983) |
0.000822914612324381545814782941477 | Div(Sqrt(6), Mul(96, Pow(Pi, 3))) [c60033] | 1 (#2695) |
0.00102626332050760715443754815339 | Div(667874164916771, 650782456676352000) [0983d1] | 1 (#1294) |
0.00105820105820105820105820105820 | Div(1, 945) [7cb17f] | 1 (#1705) |
0.00107459195273848882472429198735 | Neg(StieltjesGamma(25)) [e5bd3c] | 1 (#1002) |
0.00124396209040824577929974159954 | Neg(StieltjesGamma(23)) [e5bd3c] | 1 (#1000) |
0.00126448926734961868021375957764 | Neg(Sub(Pi, Div(22, 7))) [2516c2] Abs(Sub(Pi, Div(22, 7))) [2516c2] | 1 (#1159) |
0.00127000000000000000000000000000 | Decimal("0.00127") [2516c2] | 1 (#1160) |
0.00144717800289435600578871201158 | Div(1, 691) [36fff2] | 1 (#3039) |
0.00157693034468678425392340953993 | Neg(Div(-1118511313, 709296588000)) [0983d1] | 1 (#1291) |
0.00158851127890356156190619661152 | Neg(StieltjesGamma(24)) [e5bd3c] | 1 (#1001) |
0.00186744273170798881443021293483 | Exp(Neg(Mul(2, Pi))) [47acde] | 1 (#746) |
0.00205383442030334586616004654275 | StieltjesGamma(3) [e5bd3c] | 1 (#981) |
0.00232537006546730005746817017753 | StieltjesGamma(4) [e5bd3c] | 1 (#982) |
0.00244087799114398266589685852864 | Div(169709463197, 69528040243200) [0983d1] | 1 (#1288) |
0.00279309804550828848913016095296 | Mul(Decimal("0.000283"), Pow(Pi, 2)) [f33f09] | 1 (#3056) |
0.00347783691361853820900735957426 | StieltjesGamma(27) [e5bd3c] | 1 (#1004) |
0.00355772885557316094791353774891 | StieltjesGamma(30) [e5bd3c] | 1 (#1007) |
0.00381129803489199922670430215012 | Neg(Div(-5776369, 1515591000)) [0983d1] | 1 (#1285) |
0.00396825396825396825396825396825 | Div(1, 252) [e50a56] Neg(RiemannZeta(-5)) [e50a56] Neg(Neg(Div(1, 252))) [e50a56] | 1 (#1763) |
0.00416666666666666666666666666667 | Div(1, 240) [e50a56] RiemannZeta(-7) [e50a56] | 1 (#1764) |
0.00418407600207472386453821495929 | Atan(Div(1, 239)) [f8d280 8332d8] | 2 (#483) |
0.00418410041841004184100418410042 | Div(1, 239) [f8d280 8332d8] | 2 (#484) |
0.00433400000000000000000000000000 | Decimal("0.004334") [e28209] | 1 (#2878) |
0.00601454325295611786095325189975 | Div(226287557, 37623398400) [0983d1] | 1 (#1282) |
0.00640006853170062945810722822195 | StieltjesGamma(28) [e5bd3c] | 1 (#1005) |
0.00725294661224192592962550503283 | Mul(Pow(Sub(2, Sqrt(3)), 2), Pow(Sub(Sqrt(2), Sqrt(3)), 2)) [799b5e] | 1 (#2712) |
0.00737115177047223913441240242356 | StieltjesGamma(29) [e5bd3c] | 1 (#1006) |
0.00757575757575757575757575757576 | Div(1, 132) [e50a56] Neg(RiemannZeta(-9)) [e50a56] Neg(Neg(Div(1, 132))) [e50a56] | 1 (#1765) |
0.00833333333333333333333333333333 | Div(1, 120) [e50a56] RiemannZeta(-3) [e50a56] | 1 (#1762) |
0.00961689202429943170683911424652 | Neg(Div(-1963, 204120)) [0983d1] | 1 (#1279) |
0.00969036319287231848453038603521 | Neg(StieltjesGamma(2)) [e5bd3c] | 1 (#980) |
0.0111111111111111111111111111111 | Div(1, 90) [7cb17f] | 1 (#1704) |
0.0115631486220964837318670909724 | Add(Neg(Pow(2, Div(5, 8))), Sqrt(Add(1, Sqrt(2)))) [0701dc] | 1 (#3022) |
0.0151646198645465699525407342196 | DedekindEta(Mul(16, ConstI)) [0701dc] Mul(Mul(Mul(Div(1, Pow(2, Div(113, 64))), Div(Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 4)), Pow(Add(1, Sqrt(2)), Div(1, 16)))), Pow(Add(Neg(Pow(2, Div(5, 8))), Sqrt(Add(1, Sqrt(2)))), Div(1, 2))), DedekindEta(ConstI)) [0701dc] | 1 (#3012) |
0.0156250000000000000000000000000 | Div(1, 64) [37fb5f] | 1 (#3118) |
0.0156356325323339212228101116990 | Div(680863, 43545600) [0983d1] | 1 (#1276) |
0.0167363040082988954581528598371 | Mul(4, Atan(Div(1, 239))) [f8d280] | 1 (#1102) |
0.0175420600574024877814967679387 | Atan(Div(1, 57)) [8332d8] | 1 (#1122) |
0.0175438596491228070175438596491 | Div(1, 57) [8332d8] | 1 (#1123) |
0.0197398047810376615683933447558 | Mul(Mul(Div(1, Pow(2, Div(113, 64))), Div(Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 4)), Pow(Add(1, Sqrt(2)), Div(1, 16)))), Pow(Add(Neg(Pow(2, Div(5, 8))), Sqrt(Add(1, Sqrt(2)))), Div(1, 2))) [0701dc] | 1 (#3013) |
0.0204053306865380864427283400129 | Atan(Div(1, 49)) [8332d8] | 1 (#1119) |
0.0204081632653061224489795918367 | Div(1, 49) [8332d8] | 1 (#1120) |
0.0208597739922953049654038858829 | Sub(Div(3, 32), Div(ConstCatalan, Mul(4, Pi))) [ce66a9] | 1 (#3231) |
0.0210927960927960927960927960928 | Div(691, 32760) [e50a56] RiemannZeta(-11) [e50a56] | 1 (#1766) |
0.0221196984802484739062695941882 | Sub(Div(Sub(5, Sqrt(3)), 2), Div(Pow(3, Div(3, 4)), Sqrt(2))) [62ffb3] | 1 (#2990) |
0.0230957089661210338143102479065 | KeiperLiLambda(1) [d8d820 faf448] KeiperLiLambda(Pow(10, 0)) [706f66] Sub(Add(Div(ConstGamma, 2), 1), Div(Log(Mul(4, Pi)), 2)) [d8d820] Decimal("0.023095708966121033814310247906495291621932127152051") [706f66 faf448] | 3 (#290) |
0.0238095238095238095238095238095 | Div(1, 42) [588889 aed6bd] BernoulliB(6) [aed6bd] | 2 (#470) |
0.0253302959105844428609698658024 | Div(1, Pow(Mul(2, Pi), 2)) [47acde] | 1 (#740) |
0.0259847148736037624926513815403 | Neg(Div(-221, 8505)) [0983d1] | 1 (#1274) |
0.0294372515228594143797353094836 | Sub(17, Mul(12, Sqrt(2))) [35c85f] ModularLambda(Mul(2, ConstI)) [35c85f] Pow(Sub(3, Mul(2, Sqrt(2))), 2) [2991b5] | 2 (#516) |
0.0301655645906180933529164904023 | Re(Mul(Div(Mul(ConstI, Sqrt(3)), 6), DedekindEta(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))))) [4af6db] | 1 (#3030) |
0.0303300858899106433006332715786 | Neg(Div(Sub(4, Mul(3, Sqrt(2))), 8)) [4b040d] | 1 (#1232) |
0.0333333333333333333333333333333 | Div(1, 30) [588889 aed6bd] Neg(BernoulliB(8)) [aed6bd] Neg(BernoulliB(4)) [aed6bd] Neg(Neg(Div(1, 30))) [aed6bd] 4 of 5 expressions shown | 2 (#469) |
0.0416666666666666666666666666667 | Div(1, 24) [c60033 fb7a63 8b7991 afd27a] | 4 (#262) |
0.0432139182637722497744177371717 | Exp(Neg(Pi)) [47acde] | 1 (#745) |
0.0445023148148148148148148148148 | Div(769, 17280) [0983d1] | 1 (#1272) |
0.0461728676140233351928642430960 | KeiperLiLambda(2) [faf448] | 1 (#948) |
0.0592384391754448832935450798675 | Div(Mul(Pi, Sqrt(2)), 75) [afd27a] | 1 (#1703) |
0.0625000000000000000000000000000 | Div(1, 16) [033d39 e85723 0701dc] | 3 (#430) |
0.0669872981077806766181384146235 | Sub(Div(1, 2), Div(Sqrt(3), 4)) [40a376] | 1 (#1240) |
0.0692129735181082679304973488726 | KeiperLiLambda(3) [faf448] | 1 (#949) |
0.0717967697244908258902146339765 | Pow(Sub(2, Sqrt(3)), 2) [799b5e] Neg(Sub(Mul(4, Sqrt(3)), 7)) [b95ffa] | 2 (#524) |
0.0728158454836767248605863758749 | Neg(StieltjesGamma(1)) [e5bd3c 70a705] Neg(StieltjesGamma(Pow(10, 0))) [569d5c] Neg(Decimal("-0.072815845483676724860586375874901319137736338334338")) [e5bd3c 569d5c] | 3 (#291) |
0.0728902260077046950345961141171 | Div(ConstCatalan, Mul(4, Pi)) [ce66a9 dc507f] | 2 (#731) |
0.0757575757575757575757575757576 | Div(5, 66) [588889 aed6bd] BernoulliB(10) [aed6bd] | 2 (#471) |
0.0767718912697780392293221331474 | Atan(Div(1, 13)) [7ce79e] | 1 (#1114) |
0.0769230769230769230769230769231 | Div(1, 13) [7ce79e] | 1 (#1115) |
0.0795774715459476678844418816863 | Div(1, Mul(4, Pi)) [0d8639 8f0a91] | 2 (#529) |
0.0796296296296296296296296296296 | Neg(Div(-43, 540)) [0983d1] | 1 (#1270) |
0.0823232337111381915160036965412 | HurwitzZeta(4, 2) [33690e] Sub(Div(Pow(Pi, 4), 90), 1) [33690e] | 1 (#1091) |
0.0833333333333333333333333333333 | Div(1, 12) [b64782 9ce413 324483 3544a0 e50a56 6f8e14 ea26d4 4a3612 675f23] Neg(RiemannZeta(-1)) [e50a56] Neg(RiemannZeta(-13)) [e50a56] Neg(Neg(Div(1, 12))) [e50a56] | 9 (#119) |
0.0836815200414944772907642991857 | Mul(20, Atan(Div(1, 239))) [8332d8] | 1 (#1124) |
0.0884833824543687142943278390858 | MultiZetaValue(4, 2) [ef2c71] Sub(Pow(RiemannZeta(3), 2), Mul(Div(4, 3), RiemannZeta(6))) [ef2c71] | 1 (#3173) |
0.0921927044242590001927028745031 | Add(Add(Neg(Div(7, 2)), Sqrt(7)), Mul(Div(1, 2), Sqrt(Add(-7, Mul(4, Sqrt(7)))))) [7cc3d3] | 1 (#2998) |
0.0921976198730604096476278724094 | KeiperLiLambda(4) [faf448] | 1 (#950) |
0.0937500000000000000000000000000 | Div(3, 32) [ce66a9 dc507f] | 2 (#730) |
0.0946503206224769772718784827219 | Re(DigammaFunction(ConstI)) [3ac0ce] | 1 (#1179) |
0.0954915028125262879488532914086 | Div(1, Pow(Mul(2, GoldenRatio), 2)) [42d727] | 1 (#1157) |
0.100000000000000000000000000000 | Decimal("0.1") [6ae152 b0921b] | 2 (#528) |
0.101020514433643803605431850588 | Pow(Sub(Sqrt(2), Sqrt(3)), 2) [799b5e] | 1 (#2713) |
0.101321183642337771443879463210 | Div(1, Pow(Pi, 2)) [47acde] | 1 (#739) |
0.104496581019902395925517067662 | Neg(Im(DedekindEta(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))))) [204acd 4af6db] Neg(Im(Mul(Exp(Neg(Div(Mul(Pi, ConstI), 24))), Div(Mul(Pow(3, Div(1, 8)), Pow(Gamma(Div(1, 3)), Div(3, 2))), Mul(2, Pi))))) [204acd] | 2 (#717) |
0.107532081827222538581625527339 | Pow(Add(Neg(Pow(2, Div(5, 8))), Sqrt(Add(1, Sqrt(2)))), Div(1, 2)) [0701dc] | 1 (#3021) |
0.107653919226484576615323445091 | HalphenConstant [e2bfdb f5e0b0 831ea4 d0993b 5c1e44 c26bc9 9758ac 6161c7 06c468 31adf6] UniqueZero(Brackets(JacobiTheta(2, 0, Div(Log(Neg(x)), Mul(Mul(2, Pi), ConstI)), 2)), ForElement(x, OpenInterval(0, 1))) [06c468] UniqueZero(Add(Neg(Div(1, 8)), Sum(Div(Mul(n, Pow(x, n)), Sub(1, Pow(Neg(x), n))), For(n, 1, Infinity))), ForElement(x, OpenInterval(0, 1))) [9758ac] UniqueZero(Brackets(Sum(Mul(Pow(Add(Mul(2, n), 1), 2), Pow(Neg(x), Div(Mul(n, Add(n, 1)), 2))), For(n, 0, Infinity))), ForElement(x, OpenInterval(0, 1))) [31adf6] 4 of 8 expressions shown | 10 (#110) |
0.111007528912821990207829460530 | Pow(ConstGamma, 4) [a4f9c9] | 1 (#3161) |
0.111111111111111111111111111111 | Div(1, 9) [d0993b] | 1 (#3249) |
0.115108542892235490486221281099 | KeiperLiLambda(5) [faf448] | 1 (#951) |
0.121486290535849608095514557178 | Neg(Decimal("-0.121486290535849608095514557178")) [b05f2b] | 1 (#1477) |
0.121500000000000000000000000000 | Neg(Decimal("-0.1215")) [c6038c] | 1 (#1472) |
0.123144711070133133641515436200 | DedekindEta(Mul(8, ConstI)) [be2f32] Mul(Mul(Div(1, Pow(2, Div(41, 32))), Div(Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 2)), Pow(Add(1, Sqrt(2)), Div(1, 8)))), DedekindEta(ConstI)) [be2f32] | 1 (#3004) |
0.124354994546761435031354849164 | Atan(Div(1, 8)) [5278da] | 1 (#1108) |
0.125000000000000000000000000000 | Div(1, 8) [5278da 8c368f 831ea4 2744d4 dc507f a255e1 a17386 13f971 204acd a0dff6 ... 10 of 19 shown] Neg(Neg(Div(1, 8))) [831ea4 f178f2 9758ac b58070] 2 of 2 expressions shown | 19 (#68) |
0.130526192220051591548406227895 | Im(Exp(Div(Mul(Pi, ConstI), 24))) [a1a3d4] Neg(Im(Exp(Neg(Div(Mul(Pi, ConstI), 24))))) [204acd] | 2 (#720) |
0.130899693899574718269276807637 | Im(Div(Mul(Pi, ConstI), 24)) [204acd a1a3d4] Arg(Exp(Div(Mul(Pi, ConstI), 24))) [a1a3d4] Neg(Im(Neg(Div(Mul(Pi, ConstI), 24)))) [204acd] Neg(Arg(Exp(Neg(Div(Mul(Pi, ConstI), 24))))) [204acd] 4 of 6 expressions shown | 3 (#431) |
0.130919030396762446904114826020 | Decimal("0.130919030396762446904114826020") [be9790] | 1 (#3060) |
0.137927668713729882904167137003 | KeiperLiLambda(6) [faf448] | 1 (#952) |
0.141897054604163922812851617103 | Atan(Div(1, 7)) [b1357b 7ce79e 0644b6] | 3 (#299) |
0.142857142857142857142857142857 | Div(1, 7) [b1357b 7ce79e 0644b6] | 3 (#300) |
0.144303916225383215151628022521 | Div(ConstGamma, 4) [7783f9] | 1 (#2506) |
0.152777777777777777777777777778 | Div(11, 72) [0983d1] | 1 (#1269) |
0.154949828301810685124955130484 | Neg(Re(Gamma(ConstI))) [9c93bb] | 1 (#1173) |
0.158277131696860118826182353677 | Neg(Sub(Div(Sub(Log(Mul(2, Pi)), 1), 2), ConstGamma)) [a54fb0] | 1 (#3242) |
0.159154943091895335768883763373 | Div(1, Mul(2, Pi)) [541e2e 47acde d1a0ec] Im(Div(ConstI, Mul(2, Pi))) [1c25d3 82b410] | 5 (#188) |
0.159997719880929103080793291810 | DedekindEta(Mul(7, ConstI)) [7cc3d3] Mul(Mul(Div(1, Sqrt(7)), Pow(Add(Add(Neg(Div(7, 2)), Sqrt(7)), Mul(Div(1, 2), Sqrt(Add(-7, Mul(4, Sqrt(7)))))), Div(1, 4))), DedekindEta(ConstI)) [7cc3d3] | 1 (#2994) |
0.160297625529329365795673129718 | Mul(Div(1, Pow(2, Div(41, 32))), Div(Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 2)), Pow(Add(1, Sqrt(2)), Div(1, 8)))) [be2f32] | 1 (#3005) |
0.160637159652994212940402872574 | KeiperLiLambda(7) [faf448] | 1 (#953) |
0.165421143700450929213919660243 | Sub(Log(ConstGlaisher), Div(1, 12)) [ea26d4] | 1 (#3243) |
0.166640226007704695034596114117 | Add(Div(3, 32), Div(ConstCatalan, Mul(4, Pi))) [dc507f] | 1 (#3237) |
0.166666666666666666666666666667 | Div(1, 6) [669765 2fabeb fba07c 177de7 c03f78 688efb 82b410 62ffb3 588889 5f0adb ... 10 of 19 shown] BernoulliB(2) [aed6bd] 3 of 3 expressions shown | 19 (#67) |
0.171572875253809902396622551581 | Sub(3, Mul(2, Sqrt(2))) [f9190b 2991b5] | 2 (#512) |
0.183219459643382579081939317747 | KeiperLiLambda(8) [faf448] | 1 (#954) |
0.183571306772937270403404804486 | Mul(Div(1, Pow(2, Div(113, 64))), Div(Pow(Sub(Pow(2, Div(1, 4)), 1), Div(1, 4)), Pow(Add(1, Sqrt(2)), Div(1, 16)))) [0701dc] | 1 (#3014) |
0.189207115002721066717499970560 | Sub(Pow(2, Div(1, 4)), 1) [be2f32 0701dc] | 2 (#713) |
0.192056355581514164750648544894 | Neg(Im(Mul(Neg(Div(ConstI, 4)), DedekindEta(ConstI)))) [5706ab] | 1 (#2975) |
0.192315516821184589663192374420 | Pow(ConstGamma, 3) [39ce44] Neg(Neg(Pow(ConstGamma, 3))) [39ce44] | 1 (#3154) |
0.197395559849880758370049765195 | Atan(Div(1, 5)) [5278da f8d280] | 2 (#482) |
0.200000000000000000000000000000 | Div(1, 5) [5278da f8d280 e9a269] Decimal("0.2") [799894] | 4 (#229) |
0.202056903159594285399738161511 | HurwitzZeta(3, 2) [4dd87c] Sub(RiemannZeta(3), 1) [4dd87c] | 1 (#1090) |
0.205616758356028304559051895831 | Div(Pow(Pi, 2), 48) [208da7] Neg(Re(PolyLog(2, ConstI))) [1d65c2 208da7] Neg(Neg(Div(Pow(Pi, 2), 48))) [208da7] Neg(Re(Add(Neg(Div(Pow(Pi, 2), 48)), Mul(ConstCatalan, ConstI)))) [208da7] | 2 (#504) |
0.205657338709170461702893874213 | KeiperLiLambda(9) [faf448] | 1 (#955) |
0.207879576350761899730468508186 | DedekindEta(Mul(6, ConstI)) [62ffb3] Mul(Mul(Div(1, Pow(6, Div(3, 8))), Pow(Sub(Div(Sub(5, Sqrt(3)), 2), Div(Pow(3, Div(3, 4)), Sqrt(2))), Div(1, 6))), DedekindEta(ConstI)) [62ffb3] | 1 (#2985) |
0.207879576350761908546955619835 | Pow(ConstI, ConstI) [a39534] Exp(Neg(Div(Pi, 2))) [47acde a39534] | 2 (#438) |
0.208269233523258141573410018683 | Mul(Div(1, Sqrt(7)), Pow(Add(Add(Neg(Div(7, 2)), Sqrt(7)), Mul(Div(1, 2), Sqrt(Add(-7, Mul(4, Sqrt(7)))))), Div(1, 4))) [7cc3d3] | 1 (#2995) |
0.208333333333333333333333333333 | Div(5, 24) [c60033 22b67a] | 2 (#580) |
0.213798868224592547099583574508 | MultiZetaValue(3, 3) [3a5167] Mul(Div(1, 2), Sub(Pow(RiemannZeta(3), 2), RiemannZeta(6))) [3a5167] | 1 (#3178) |
0.217233628211221657408279325562 | Neg(Minimum(Sinc(x), ForElement(x, RR))) [2ac5eb] | 1 (#1086) |
0.217234000000000000000000000000 | Neg(Decimal("-0.217234")) [41998e 4d3f04] | 2 (#507) |
0.227933936319315774369303405737 | KeiperLiLambda(10) [faf448] KeiperLiLambda(Pow(10, 1)) [706f66] Decimal("0.22793393631931577436930340573684453380748385942738") [706f66 faf448] | 2 (#467) |
0.228810397603353759768746148942 | MultiZetaValue(3, 2) [a5e52e] Sub(Mul(Mul(3, RiemannZeta(2)), RiemannZeta(3)), Mul(Div(11, 2), RiemannZeta(5))) [a5e52e] | 1 (#3169) |
0.229130211301863551658630160015 | Im(Mul(Div(Mul(ConstI, Sqrt(3)), 6), DedekindEta(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))))) [4af6db] | 1 (#3031) |
0.231107366862909395657324314639 | Abs(Mul(Div(Mul(ConstI, Sqrt(3)), 6), DedekindEta(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))))) [4af6db] | 1 (#3032) |
0.237856295886805506742962363080 | Div(Mul(Pi, Sub(3, ConstGamma)), 32) [cf70ce] | 1 (#2509) |
0.242640687119285146405066172629 | Add(-4, Mul(3, Sqrt(2))) [669765] Neg(Sub(4, Mul(3, Sqrt(2)))) [4b040d] | 2 (#518) |
0.244978663126864154172082481211 | Atan(Div(1, 4)) [7ce79e] | 1 (#1112) |
0.248754477033784262547252993576 | Log(ConstGlaisher) [4a3612 b64782 3544a0 6f8e14 ea26d4 6395ee] | 6 (#187) |
0.250000000000000000000000000000 | Div(1, 4) [390158 e30d7e f12e20 4b040d f1dd8a b7f13b 2f3ed3 e54e61 ed4cca aac129 ... 10 of 115 shown] Im(Div(ConstI, 4)) [5706ab 7f9273] Neg(Neg(Div(1, 4))) [7f9273 54daa9 7d7c65 95e9e4 4c8873] Neg(Im(Neg(Div(ConstI, 4)))) [5706ab] 4 of 5 expressions shown | 116 (#13) |
0.250032803474563278214049735714 | KeiperLiLambda(11) [faf448] | 1 (#956) |
0.253113553113553113553113553114 | Div(691, 2730) [aed6bd] Neg(BernoulliB(12)) [aed6bd] Neg(Neg(Div(691, 2730))) [aed6bd] | 1 (#1027) |
0.258819045102520762348898837624 | Im(Exp(Div(Mul(ConstI, Pi), 12))) [0abbe1] Im(Exp(Div(Mul(Pi, ConstI), 12))) [1bae52] Neg(Im(Exp(Neg(Div(Mul(ConstI, Pi), 12))))) [175b7a] | 3 (#315) |
0.258819403792806798405183560189 | Neg(AiryAi(0, 1)) [807917 20e530 01bbb6] Div(1, Mul(Pow(3, Div(1, 3)), Gamma(Div(1, 3)))) [807917] Neg(Neg(Div(1, Mul(Pow(3, Div(1, 3)), Gamma(Div(1, 3)))))) [807917] | 3 (#421) |
0.261799387799149436538553615273 | Div(Pi, 12) [7dd050] Atan(Sub(2, Sqrt(3))) [7dd050] Im(Div(Mul(ConstI, Pi), 12)) [175b7a 0abbe1 871996] Im(Div(Mul(Pi, ConstI), 12)) [1bae52] 4 of 16 expressions shown | 5 (#201) |
0.267949192431122706472553658494 | Sub(2, Sqrt(3)) [7dd050 799b5e] | 2 (#511) |
0.270090838144013718987394296443 | DedekindEta(Mul(5, ConstI)) [e9a269 d2900f] Div(DedekindEta(ConstI), Sqrt(Mul(5, GoldenRatio))) [d2900f] | 2 (#503) |
0.270597106408347823822983496052 | Mul(Div(1, Pow(6, Div(3, 8))), Pow(Sub(Div(Sub(5, Sqrt(3)), 2), Div(Pow(3, Div(3, 4)), Sqrt(2))), Div(1, 6))) [62ffb3] | 1 (#2986) |
0.271197562979063539126452139909 | CarlsonRJ(1, 2, 2, 4) [44d300] Div(Mul(Sub(9, Mul(4, Sqrt(3))), Pi), 24) [44d300] | 1 (#1264) |
0.271937943385384987339923832493 | KeiperLiLambda(12) [faf448] | 1 (#957) |
0.272029054982133162950236583672 | Div(Pi, Sinh(Pi)) [9c93bb] | 1 (#1176) |
0.288607832450766430303256045041 | Div(ConstGamma, 2) [d8d820] | 1 (#2513) |
0.288675134594812882254574390251 | Im(Div(Mul(ConstI, Sqrt(3)), 6)) [4af6db] | 1 (#3034) |
0.291666666666666666666666666667 | Div(7, 24) [c60033 324483] | 2 (#696) |
0.293633850603688152854182150099 | KeiperLiLambda(13) [faf448] | 1 (#958) |
0.293755965338609954717681610321 | BarnesG(Div(1, 4)) [ce66a9] Div(Pow(ConstE, Sub(Div(3, 32), Div(ConstCatalan, Mul(4, Pi)))), Mul(Pow(ConstGlaisher, Div(9, 8)), Pow(Gamma(Div(1, 4)), Div(3, 4)))) [ce66a9] | 1 (#3229) |
0.294099247912570319071161432121 | Div(1, Pow(2, Div(113, 64))) [0701dc] | 1 (#3015) |
0.299535058683898051859980623070 | Re(CarlsonRG(0, 1, -1)) [9e30e7] Im(CarlsonRG(0, 1, -1)) [9e30e7] Div(Pow(Pi, Div(3, 2)), Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2))) [3f1547 84f403] Div(Mul(Sqrt(2), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))) [7c50d1 9e30e7] 4 of 6 expressions shown | 4 (#241) |
0.300000000000000000000000000000 | Div(3, 10) [230a49 588889 a4e47f] Neg(Neg(Div(3, 10))) [230a49 a4e47f] | 3 (#320) |
0.303225372841205755868149008990 | Mul(Sub(Sqrt(2), 1), Sub(Sqrt(3), 1)) [669765] | 1 (#2604) |
0.303963550927013314331638389629 | Div(3, Pow(Pi, 2)) [8d7b3d 220e8d] SequenceLimit(Mul(Div(1, Pow(N, 2)), Sum(Totient(n), For(n, 1, N))), For(N, Infinity)) [220e8d] | 2 (#493) |
0.306348962530033122115675701200 | Im(Mul(Div(1, Mul(Pi, ConstI)), Log(Div(Sub(3, Sqrt(5)), 2)))) [22b67a da1873] | 2 (#577) |
0.307087565079112156917288532590 | Mul(4, Atan(Div(1, 13))) [7ce79e] | 1 (#1113) |
0.309016994374947424102293417183 | Sin(Div(Pi, 10)) [fad16f] Div(1, Mul(2, GoldenRatio)) [030560] Re(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))) [7a56c2] Re(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5)))) [7a56c2] 4 of 6 expressions shown | 3 (#295) |
0.310145436823334391528959122550 | Div(Mul(8, RiemannZeta(3)), Pow(Pi, 3)) [5b87f3] Integral(Div(Mul(Pow(JacobiTheta(2, 0, Mul(ConstI, t)), 4), Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 4)), Add(1, Pow(t, 2))), For(t, 0, Infinity)) [5b87f3] | 1 (#2722) |
0.314159265358979323846264338328 | Div(Pi, 10) [fad16f] Asin(Div(1, Mul(2, GoldenRatio))) [030560] | 2 (#481) |
0.315105548477185608005760092633 | KeiperLiLambda(14) [faf448] | 1 (#959) |
0.317837245195782244725757617296 | Neg(Sub(Sqrt(2), Sqrt(3))) [799b5e] | 1 (#2714) |
0.318309886183790671537767526745 | Div(1, Pi) [68b73d cac83e c7f7a5 c6c108 47acde 4c0698 a7095f 7ae3ed 57fcaf de9800 ... 10 of 17 shown] Neg(Im(Div(1, Mul(Pi, ConstI)))) [22b67a da1873] Mul(Div(1, 2), Hypergeometric2F1(Div(1, 2), Neg(Div(1, 2)), 1, 1)) [a7095f] Mul(Div(1, 4), Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), 1, 1)) [c6c108] 4 of 8 expressions shown | 19 (#65) |
0.321750554396642193401404614359 | Atan(Div(1, 3)) [7ce79e 0644b6 cbf396] | 3 (#297) |
0.326013219749747244355624201222 | CarlsonRJ(1, 1, 2, 4) [6e9544] Sub(Log(Add(1, Sqrt(2))), Div(Mul(Sqrt(2), Pi), 8)) [6e9544] | 1 (#1261) |
0.329684017215576064690527038739 | Sub(Div(Mul(Sqrt(3), Pi), 6), ConstGamma) [45a969] | 1 (#3128) |
0.333177923807718674318376136355 | Pow(ConstGamma, 2) [a4f9c9 1165fc] | 2 (#728) |
0.333333333333333333333333333333 | Div(1, 3) [d3b45d 98f642 8356db e2035a e3e4c5 6c71c0 7f3485 68b73d f48f54 8f4e31 ... 10 of 40 shown] Neg(Div(-1, 3)) [0983d1] Im(Div(ConstI, 3)) [52302f] Neg(Neg(Div(1, 3))) [68b73d e7b5be fda595 685892 7f3485 90c66a] 4 of 6 expressions shown | 42 (#31) |
0.336338624801786230569007429169 | KeiperLiLambda(15) [faf448] | 1 (#960) |
0.340625019316606640194394244038 | Im(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4)))) [0abbe1] Neg(Im(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4))))) [175b7a] | 2 (#523) |
0.350919807174143236430229589056 | DedekindEta(Mul(4, ConstI)) [3a56d8] Div(DedekindEta(ConstI), Mul(Pow(2, Div(13, 16)), Pow(Add(1, Sqrt(2)), Div(1, 4)))) [3a56d8] | 1 (#2981) |
0.353553390593273762200422181052 | Div(1, Sqrt(8)) [5f7334] | 1 (#1377) |
0.354050370636652436736982339635 | Sub(Div(Pi, 3), Log(2)) [140815] Integral(Pow(Sub(JacobiTheta(4, 0, Mul(ConstI, t)), 1), 2), For(t, 0, Infinity)) [140815] | 1 (#2716) |
0.355028053887817239260063186004 | AiryAi(0) [01bbb6 20e530 693cfe] Div(1, Mul(Pow(3, Div(2, 3)), Gamma(Div(2, 3)))) [693cfe] | 3 (#420) |
0.357319265554299539963691666865 | KeiperLiLambda(16) [faf448] | 1 (#961) |
0.367879441171442321595523770161 | Exp(-1) [41ece5 9be916 17eaad 8d486c ee86fb 44ad09 55498b a34260 72b6ca 0d3b91 ... 10 of 14 shown] Div(1, ConstE) [a172c7 636929 b93d09 30bd5b 58c19a 050c46 314807 d09380] Neg(Neg(Exp(-1))) [41ece5 9be916 17eaad 8d486c ee86fb 44ad09 55498b a34260 72b6ca 0d3b91 ... 10 of 14 shown] Neg(Neg(Div(1, ConstE))) [a172c7 636929 b93d09 314807 d09380] 4 of 4 expressions shown | 22 (#62) |
0.375000000000000000000000000000 | Div(3, 8) [669765 d70b12 add3ea a255e1 9ce413 62ffb3 f12e20 5384f3 87e9ed 0096a8 ... 10 of 12 shown] Neg(Neg(Div(3, 8))) [add3ea 675f23 d70b12] 2 of 2 expressions shown | 12 (#101) |
0.377964473009227227214516536234 | Div(1, Sqrt(7)) [7cc3d3] | 1 (#2996) |
0.378034286595129582420325938879 | KeiperLiLambda(17) [faf448] | 1 (#962) |
0.381966011250105151795413165634 | Div(Sub(3, Sqrt(5)), 2) [22b67a da1873] | 2 (#578) |
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC