Fungrim home page

Fungrim entry: b05f2b

minx(0,)logΓ(x)[0.121486290535849608095514557178±3.091031]\mathop{\min}\limits_{x \in \left(0, \infty\right)} \log \Gamma(x) \in \left[-0.121486290535849608095514557178 \pm 3.09 \cdot 10^{-31}\right]
\mathop{\min}\limits_{x \in \left(0, \infty\right)} \log \Gamma(x) \in \left[-0.121486290535849608095514557178 \pm 3.09 \cdot 10^{-31}\right]
Fungrim symbol Notation Short description
MinimumminxSf(x)\mathop{\min}\limits_{x \in S} f(x) Minimum value of a set or function
LogGammalogΓ(z)\log \Gamma(z) Logarithmic gamma function
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Element(Minimum(LogGamma(x), ForElement(x, OpenInterval(0, Infinity))), RealBall(Decimal("-0.121486290535849608095514557178"), Decimal("3.09e-31")))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC