Fungrim home page

Specific values of Carlson symmetric elliptic integrals

Table of contents: The elementary integral RC - The integral of the first kind RF - The integral of the second kind RG - The degenerate integral of the third kind RD - The integral of the third kind RJ

Related topics: Carlson symmetric elliptic integrals

The elementary integral RC

Scale invariance

a839d5
RC ⁣(λx,λy)=λ1/2RC ⁣(x,y)R_C\!\left(\lambda x, \lambda y\right) = {\lambda}^{-1 / 2} R_C\!\left(x, y\right)

Particular constant values

5c2b08
RC ⁣(0,0)=~R_C\!\left(0, 0\right) = {\tilde \infty}
1acb07
RC ⁣(1,0)=R_C\!\left(1, 0\right) = \infty
e464ec
RC ⁣(0,1)=π2R_C\!\left(0, 1\right) = \frac{\pi}{2}
d38c27
RC ⁣(1,1)=1R_C\!\left(1, 1\right) = 1
eac389
RC ⁣(1,2)=π4R_C\!\left(1, 2\right) = \frac{\pi}{4}
a15c03
RC ⁣(2,1)=log ⁣(1+2)R_C\!\left(2, 1\right) = \log\!\left(1 + \sqrt{2}\right)
35cb93
RC ⁣(0,1)=πi2R_C\!\left(0, -1\right) = -\frac{\pi i}{2}
56d1bc
RC ⁣(1,0)=iR_C\!\left(-1, 0\right) = -i \infty
25435b
RC ⁣(1,1)=2log ⁣(1+2)2π24iR_C\!\left(1, -1\right) = \frac{\sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{2} - \frac{\pi \sqrt{2}}{4} i
7ea1ad
RC ⁣(1,1)=π242log ⁣(1+2)2iR_C\!\left(-1, 1\right) = \frac{\pi \sqrt{2}}{4} - \frac{\sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{2} i

Specialized values

7cbe17
RC ⁣(x,0)={sgn ⁣(1x),x0~,x=0R_C\!\left(x, 0\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{\sqrt{x}}\right) \infty, & x \ne 0\\{\tilde \infty}, & x = 0\\ \end{cases}
ff58cf
RC ⁣(0,y)={π2y,y0~,y=0R_C\!\left(0, y\right) = \begin{cases} \frac{\pi}{2 \sqrt{y}}, & y \ne 0\\{\tilde \infty}, & y = 0\\ \end{cases}
ad96f4
RC ⁣(x,x)=1xR_C\!\left(x, x\right) = \frac{1}{\sqrt{x}}
09a494
RC ⁣(x,2x)=π4xR_C\!\left(x, 2 x\right) = \frac{\pi}{4 \sqrt{x}}
b136bd
RC ⁣(2x,x)=log ⁣(1+2)xR_C\!\left(2 x, x\right) = \frac{\log\!\left(1 + \sqrt{2}\right)}{\sqrt{x}}

General formulas for real variables

5ada5f
RC ⁣(x,y)={atan ⁣(yx1)yx,x<y1x,x=yatanh ⁣(1yx)xy,x>yR_C\!\left(x, y\right) = \begin{cases} \frac{\operatorname{atan}\!\left(\sqrt{\frac{y}{x} - 1}\right)}{\sqrt{y - x}}, & x < y\\\frac{1}{\sqrt{x}}, & x = y\\\frac{\operatorname{atanh}\!\left(\sqrt{1 - \frac{y}{x}}\right)}{\sqrt{x - y}}, & x > y\\ \end{cases}
718f3a
RC ⁣(x,y)={acos ⁣(xy)yx,x<y1x,x=yacosh ⁣(xy)xy,x>yR_C\!\left(x, y\right) = \begin{cases} \frac{\operatorname{acos}\!\left(\sqrt{\frac{x}{y}}\right)}{\sqrt{y - x}}, & x < y\\\frac{1}{\sqrt{x}}, & x = y\\\frac{\operatorname{acosh}\!\left(\sqrt{\frac{x}{y}}\right)}{\sqrt{x - y}}, & x > y\\ \end{cases}
de0638
RC ⁣(x,y)=iRC ⁣(x,y)R_C\!\left(-x, -y\right) = -i R_C\!\left(x, y\right)
00cdb7
RC ⁣(x,y)=1x+y(atanh ⁣(xx+y)πi2)R_C\!\left(x, -y\right) = \frac{1}{\sqrt{x + y}} \left(\operatorname{atanh}\!\left(\sqrt{\frac{x}{x + y}}\right) - \frac{\pi i}{2}\right)
bc2f88
RC ⁣(x,y)=1x+y(π2atanh ⁣(xx+y)i)R_C\!\left(-x, y\right) = \frac{1}{\sqrt{x + y}} \left(\frac{\pi}{2} - \operatorname{atanh}\!\left(\sqrt{\frac{x}{x + y}}\right) i\right)
4becdd
RC ⁣(x,y)=iRC ⁣(x,y)R_C\!\left(-x, y\right) = \overline{i R_C\!\left(x, -y\right)}

General formulas for one or more complex variables

7b5755
RC ⁣(x,y)={atan ⁣(yx1)yx,xy1x,x=yR_C\!\left(x, y\right) = \begin{cases} \frac{\operatorname{atan}\!\left(\sqrt{\frac{y}{x} - 1}\right)}{\sqrt{y - x}}, & x \ne y\\\frac{1}{\sqrt{x}}, & x = y\\ \end{cases}
0cf60d
RC ⁣(x,y)={atanh ⁣(1yx)xy,xy1x,x=yR_C\!\left(x, y\right) = \begin{cases} \frac{\operatorname{atanh}\!\left(\sqrt{1 - \frac{y}{x}}\right)}{\sqrt{x - y}}, & x \ne y\\\frac{1}{\sqrt{x}}, & x = y\\ \end{cases}
8c9ba1
RC ⁣(x,cx)={atan ⁣(c1)(c1)x,c>11x,c=1atanh ⁣(1c)(1c)x,c<1R_C\!\left(x, c x\right) = \begin{cases} \frac{\operatorname{atan}\!\left(\sqrt{c - 1}\right)}{\sqrt{\left(c - 1\right) x}}, & c > 1\\\frac{1}{\sqrt{x}}, & c = 1\\\frac{\operatorname{atanh}\!\left(\sqrt{1 - c}\right)}{\sqrt{\left(1 - c\right) x}}, & c < 1\\ \end{cases}
7348e3
RC ⁣(x,cx)=1(c+1)x{atanh ⁣(c+1),Im(x)<0  or  (Im(x)=0  and  Re(x)0)atanh ⁣(c+1)+πi,otherwiseR_C\!\left(x, -c x\right) = \frac{1}{\sqrt{\left(c + 1\right) x}} \begin{cases} \operatorname{atanh}\!\left(\sqrt{c + 1}\right), & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\\operatorname{atanh}\!\left(\sqrt{c + 1}\right) + \pi i, & \text{otherwise}\\ \end{cases}
eb1d4f
RC ⁣(1,1+y)={atan ⁣(y)y,y01,y=0R_C\!\left(1, 1 + y\right) = \begin{cases} \frac{\operatorname{atan}\!\left(\sqrt{y}\right)}{\sqrt{y}}, & y \ne 0\\1, & y = 0\\ \end{cases}
157ebb
RC ⁣(1,1+y)=2F1 ⁣(1,12,32,y)R_C\!\left(1, 1 + y\right) = \,{}_2F_1\!\left(1, \frac{1}{2}, \frac{3}{2}, -y\right)

The integral of the first kind RF

Symmetry and scale invariance

f29729
RF ⁣(x,y,z)=RF ⁣(x,z,y)=RF ⁣(y,x,z)=RF ⁣(y,z,x)=RF ⁣(z,x,y)=RF ⁣(z,y,x)R_F\!\left(x, y, z\right) = R_F\!\left(x, z, y\right) = R_F\!\left(y, x, z\right) = R_F\!\left(y, z, x\right) = R_F\!\left(z, x, y\right) = R_F\!\left(z, y, x\right)
7a168a
RF ⁣(λx,λy,λz)=λ1/2RF ⁣(x,y,z)R_F\!\left(\lambda x, \lambda y, \lambda z\right) = {\lambda}^{-1 / 2} R_F\!\left(x, y, z\right)

Particular constant values

e39456
RF ⁣(0,0,0)=~R_F\!\left(0, 0, 0\right) = {\tilde \infty}
9a95a5
RF ⁣(0,0,1)=R_F\!\left(0, 0, 1\right) = \infty
8bb972
RF ⁣(0,1,1)=π2R_F\!\left(0, 1, 1\right) = \frac{\pi}{2}
c166ca
RF ⁣(1,1,1)=1R_F\!\left(1, 1, 1\right) = 1
4cd504
RF ⁣(1,1,2)=log ⁣(1+2)R_F\!\left(1, 1, 2\right) = \log\!\left(1 + \sqrt{2}\right)
0bf328
RF ⁣(1,2,2)=π4R_F\!\left(1, 2, 2\right) = \frac{\pi}{4}
28237a
RF ⁣(0,1,2)=(Γ ⁣(14))242πR_F\!\left(0, 1, 2\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{2 \pi}}
f1dd8a
RF ⁣(0,1,1)=(Γ ⁣(14))242π(1i)R_F\!\left(0, 1, -1\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{2 \pi}} \left(1 - i\right)
4c1988
RF ⁣(0,2,4)=(Γ ⁣(14))28πR_F\!\left(0, 2, 4\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{8 \sqrt{\pi}}
6c4567
RF ⁣(0,12,1)=(Γ ⁣(14))24πR_F\!\left(0, \frac{1}{2}, 1\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{\pi}}
90af98
RF ⁣(0,0,1)=iR_F\!\left(0, 0, -1\right) = -i \infty
3a84d6
RF ⁣(0,1,1)=πi2R_F\!\left(0, -1, -1\right) = \frac{-\pi i}{2}
6674bb
RF ⁣(1,1,1)=iR_F\!\left(-1, -1, -1\right) = -i
5c178f
RF ⁣(0,1,2)=(Γ ⁣(14))242πiR_F\!\left(0, -1, -2\right) = -\frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{2 \pi}} i
e30d7e
RF ⁣(0,1,12216)=(2+2)(Γ ⁣(14))216πR_F\!\left(0, 1, 12 \sqrt{2} - 16\right) = \frac{\left(2 + \sqrt{2}\right) {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{16 \sqrt{\pi}}
cf5caa
RF ⁣(0,i,i)=(Γ ⁣(14))24πR_F\!\left(0, i, -i\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{\pi}}
67e015
RF ⁣(0,(Γ ⁣(14))416π,(Γ ⁣(14))432π)=1R_F\!\left(0, \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{16 \pi}, \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{32 \pi}\right) = 1
8519dd
RF ⁣(0,(Γ ⁣(14))432π,(Γ ⁣(14))432π)=1iR_F\!\left(0, \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{32 \pi}, \frac{-{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{32 \pi}\right) = 1 - i

Special parametric cases

13a092
RF ⁣(0,0,x)={,x0~,x=0R_F\!\left(0, 0, x\right) = \begin{cases} \infty, & x \ne 0\\{\tilde \infty}, & x = 0\\ \end{cases}
53d869
RF ⁣(0,1,x)=K ⁣(1x)R_F\!\left(0, 1, x\right) = K\!\left(1 - x\right)
ab5af3
RF ⁣(0,x,x)=π2xR_F\!\left(0, x, x\right) = \frac{\pi}{2 \sqrt{x}}
415ff0
RF ⁣(0,x,y)=K ⁣(1yx)xR_F\!\left(0, x, y\right) = \frac{K\!\left(1 - \frac{y}{x}\right)}{\sqrt{x}}
0ed5e2
RF ⁣(0,x,2x)=1x(Γ ⁣(14))242πR_F\!\left(0, x, 2 x\right) = \frac{1}{\sqrt{x}} \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{2 \pi}}
e54e61
RF ⁣(0,x,x)=1x(Γ ⁣(14))242π{1i,Im(x)<0  or  (Im(x)=0  and  Re(x)0)1+i,otherwiseR_F\!\left(0, x, -x\right) = \frac{1}{\sqrt{x}} \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{2 \pi}} \begin{cases} 1 - i, & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\1 + i, & \text{otherwise}\\ \end{cases}
538c8c
RF ⁣(0,x,cx)=K ⁣(1c)xR_F\!\left(0, x, c x\right) = \frac{K\!\left(1 - c\right)}{\sqrt{x}}
271b73
RF ⁣(0,x,cx)=1x{K ⁣(1+c),Im(x)<0  or  (Im(x)=0  and  Re(x)0)K ⁣(1+c)+2iK ⁣(c),otherwiseR_F\!\left(0, x, -c x\right) = \frac{1}{\sqrt{x}} \begin{cases} K\!\left(1 + c\right), & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\K\!\left(1 + c\right) + 2 i K\!\left(-c\right), & \text{otherwise}\\ \end{cases}
63d11e
RF ⁣(x,y,y)=RC ⁣(x,y)R_F\!\left(x, y, y\right) = R_C\!\left(x, y\right)
ebaa1a
RF ⁣(x,x,y)=RC ⁣(y,x)R_F\!\left(x, x, y\right) = R_C\!\left(y, x\right)
649dc0
RF ⁣(x,x,y)={atan ⁣(xy1)xy,xy1x,x=yR_F\!\left(x, x, y\right) = \begin{cases} \frac{\operatorname{atan}\!\left(\sqrt{\frac{x}{y} - 1}\right)}{\sqrt{x - y}}, & x \ne y\\\frac{1}{\sqrt{x}}, & x = y\\ \end{cases}
9b0388
RF ⁣(x,x,x)=1xR_F\!\left(x, x, x\right) = \frac{1}{\sqrt{x}}
5ab6bf
RF ⁣(x,y,z)=iRF ⁣(x,y,z)R_F\!\left(-x, -y, -z\right) = -i R_F\!\left(x, y, z\right)
23e0a7
RF ⁣(x,y,z)=iRF ⁣(x,y,z)R_F\!\left(-x, -y, z\right) = \overline{i R_F\!\left(x, y, -z\right)}

The integral of the second kind RG

Symmetry and scale invariance

b478a1
RG ⁣(x,y,z)=RG ⁣(x,z,y)=RG ⁣(y,x,z)=RG ⁣(y,z,x)=RG ⁣(z,x,y)=RG ⁣(z,y,x)R_G\!\left(x, y, z\right) = R_G\!\left(x, z, y\right) = R_G\!\left(y, x, z\right) = R_G\!\left(y, z, x\right) = R_G\!\left(z, x, y\right) = R_G\!\left(z, y, x\right)
f9ca94
RG ⁣(λx,λy,λz)=λ1/2RG ⁣(x,y,z)R_G\!\left(\lambda x, \lambda y, \lambda z\right) = {\lambda}^{1 / 2} R_G\!\left(x, y, z\right)

Particular constant values

bcc121
RG ⁣(0,0,0)=0R_G\!\left(0, 0, 0\right) = 0
d5ff09
RG ⁣(0,0,1)=12R_G\!\left(0, 0, 1\right) = \frac{1}{2}
cd55cf
RG ⁣(0,1,1)=π4R_G\!\left(0, 1, 1\right) = \frac{\pi}{4}
250ff1
RG ⁣(1,1,1)=1R_G\!\left(1, 1, 1\right) = 1
4d7098
RG ⁣(1,1,2)=22+log ⁣(1+2)2R_G\!\left(1, 1, 2\right) = \frac{\sqrt{2}}{2} + \frac{\log\!\left(1 + \sqrt{2}\right)}{2}
d51efc
RG ⁣(1,2,2)=π4+12R_G\!\left(1, 2, 2\right) = \frac{\pi}{4} + \frac{1}{2}
84f403
RG ⁣(0,1,2)=(Γ ⁣(14))282π+π3/22(Γ ⁣(14))2R_G\!\left(0, 1, 2\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{8 \sqrt{2 \pi}} + \frac{{\pi}^{3 / 2}}{\sqrt{2} {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}
9e30e7
RG ⁣(0,1,1)=2π3/22(Γ ⁣(14))2(1+i)R_G\!\left(0, 1, -1\right) = \frac{\sqrt{2} {\pi}^{3 / 2}}{2 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}} \left(1 + i\right)
c5a9cf
RG ⁣(0,16,16)=πR_G\!\left(0, 16, 16\right) = \pi

Special parametric cases

d829be
RG ⁣(0,0,x)=x2R_G\!\left(0, 0, x\right) = \frac{\sqrt{x}}{2}
3f6d40
RG ⁣(0,1,x)=E ⁣(1x)2R_G\!\left(0, 1, x\right) = \frac{E\!\left(1 - x\right)}{2}
cdb587
RG ⁣(0,x,x)=πx4R_G\!\left(0, x, x\right) = \frac{\pi \sqrt{x}}{4}
7cddc6
RG ⁣(0,x,y)=xE ⁣(1yx)2R_G\!\left(0, x, y\right) = \frac{\sqrt{x} E\!\left(1 - \frac{y}{x}\right)}{2}
3f1547
RG ⁣(0,x,2x)=x((Γ ⁣(14))282π+π3/22(Γ ⁣(14))2)R_G\!\left(0, x, 2 x\right) = \sqrt{x} \left(\frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{8 \sqrt{2 \pi}} + \frac{{\pi}^{3 / 2}}{\sqrt{2} {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}\right)
7c50d1
RG ⁣(0,x,x)=x2π3/22(Γ ⁣(14))2{1+i,Im(x)<0  or  (Im(x)=0  and  Re(x)0)1i,otherwiseR_G\!\left(0, x, -x\right) = \sqrt{x} \frac{\sqrt{2} {\pi}^{3 / 2}}{2 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}} \begin{cases} 1 + i, & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\1 - i, & \text{otherwise}\\ \end{cases}
a2e9dd
RG ⁣(0,x,cx)=xE ⁣(1c)2R_G\!\left(0, x, c x\right) = \frac{\sqrt{x} E\!\left(1 - c\right)}{2}
48333c
RG ⁣(0,x,cx)=x2{E ⁣(1+c),Im(x)<0  or  (Im(x)=0  and  Re(x)0)E ⁣(1+c)+2i(K ⁣(c)E ⁣(c)),otherwiseR_G\!\left(0, x, -c x\right) = \frac{\sqrt{x}}{2} \begin{cases} E\!\left(1 + c\right), & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\E\!\left(1 + c\right) + 2 i \left(K\!\left(-c\right) - E\!\left(-c\right)\right), & \text{otherwise}\\ \end{cases}
5d0c95
RG ⁣(x,y,y)=12{yRC ⁣(x,y)+x,y0x,y=0R_G\!\left(x, y, y\right) = \frac{1}{2} \begin{cases} y R_C\!\left(x, y\right) + \sqrt{x}, & y \ne 0\\\sqrt{x}, & y = 0\\ \end{cases}
120284
RG ⁣(x,x,y)=12{xRC ⁣(y,x)+y,x0y,x=0R_G\!\left(x, x, y\right) = \frac{1}{2} \begin{cases} x R_C\!\left(y, x\right) + \sqrt{y}, & x \ne 0\\\sqrt{y}, & x = 0\\ \end{cases}
990145
RG ⁣(x,x,x)=xR_G\!\left(x, x, x\right) = \sqrt{x}
092716
RG ⁣(x,y,z)=iRG ⁣(x,y,z)R_G\!\left(-x, -y, -z\right) = i R_G\!\left(x, y, z\right)
4091ad
RG ⁣(x,y,z)=iRG ⁣(x,y,z)R_G\!\left(-x, -y, z\right) = -\overline{i R_G\!\left(x, y, -z\right)}

The degenerate integral of the third kind RD

Symmetry and scale invariance

1e8061
RD ⁣(x,y,z)=RD ⁣(y,x,z)R_D\!\left(x, y, z\right) = R_D\!\left(y, x, z\right)
197a91
RD ⁣(λx,λy,λz)=λ3/2RD ⁣(x,y,z)R_D\!\left(\lambda x, \lambda y, \lambda z\right) = {\lambda}^{-3 / 2} R_D\!\left(x, y, z\right)

Particular constant values

980014
RD ⁣(0,0,0)=~R_D\!\left(0, 0, 0\right) = {\tilde \infty}
dbe634
RD ⁣(0,1,0)=~R_D\!\left(0, 1, 0\right) = {\tilde \infty}
748131
RD ⁣(0,0,1)=R_D\!\left(0, 0, 1\right) = \infty
84ea08
RD ⁣(0,1,1)=3π4R_D\!\left(0, 1, 1\right) = \frac{3 \pi}{4}
1c0fee
RD ⁣(1,1,1)=1R_D\!\left(1, 1, 1\right) = 1
f47947
RD ⁣(1,1,2)=3log ⁣(1+2)322R_D\!\left(1, 1, 2\right) = 3 \log\!\left(1 + \sqrt{2}\right) - \frac{3 \sqrt{2}}{2}
4d2c10
RD ⁣(1,2,2)=3π834R_D\!\left(1, 2, 2\right) = \frac{3 \pi}{8} - \frac{3}{4}
eda57d
RD ⁣(2,2,1)=33π4R_D\!\left(2, 2, 1\right) = 3 - \frac{3 \pi}{4}
060366
RD ⁣(0,1,2)=32(Γ ⁣(14))216π32π3/22(Γ ⁣(14))2R_D\!\left(0, 1, 2\right) = \frac{3 \sqrt{2} {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{16 \sqrt{\pi}} - \frac{3 \sqrt{2} {\pi}^{3 / 2}}{2 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}
63644d
RD ⁣(0,2,1)=32π3/2(Γ ⁣(14))2R_D\!\left(0, 2, 1\right) = \frac{3 \sqrt{2} {\pi}^{3 / 2}}{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}
14a365
RD ⁣(0,0,1)=iR_D\!\left(0, 0, -1\right) = i \infty
2dcf0c
RD ⁣(0,1,1)=3(Γ ⁣(14))282π(1i)32π3/22(Γ ⁣(14))2(1+i)R_D\!\left(0, -1, 1\right) = \frac{3 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{8 \sqrt{2 \pi}} \left(1 - i\right) - \frac{3 \sqrt{2} {\pi}^{3 / 2}}{2 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}} \left(1 + i\right)
d52bda
RD ⁣(0,1,1)=3π4iR_D\!\left(0, -1, -1\right) = \frac{3 \pi}{4} i
545e8b
RD ⁣(1,1,1)=32π8+(32log ⁣(1+2)432)iR_D\!\left(1, 1, -1\right) = -\frac{3 \sqrt{2} \pi}{8} + \left(\frac{3 \sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{4} - \frac{3}{2}\right) i
3047b1
RD ⁣(1,1,1)=3432log ⁣(1+2)8+32πi16R_D\!\left(1, -1, -1\right) = -\frac{3}{4} - \frac{3 \sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{8} + \frac{3 \sqrt{2} \pi i}{16}
4a2403
RD ⁣(1,1,1)=iR_D\!\left(-1, -1, -1\right) = i

Special parametric cases

f07e9d
RD ⁣(0,0,z)={sgn ⁣(1z3/2),z0~,otherwiseR_D\!\left(0, 0, z\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{{z}^{3 / 2}}\right) \infty, & z \ne 0\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}
3e05c6
RD ⁣(0,y,1)={3(K ⁣(1y)E ⁣(1y))1y,y13π4,y=1R_D\!\left(0, y, 1\right) = \begin{cases} \frac{3 \left(K\!\left(1 - y\right) - E\!\left(1 - y\right)\right)}{1 - y}, & y \ne 1\\\frac{3 \pi}{4}, & y = 1\\ \end{cases}
61c002
RD ⁣(0,1,z)={3(E ⁣(1z)zK ⁣(1z))z(1z),z0  and  z13π4,z=1~,z=0R_D\!\left(0, 1, z\right) = \begin{cases} \frac{3 \left(E\!\left(1 - z\right) - z K\!\left(1 - z\right)\right)}{z \left(1 - z\right)}, & z \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 1\\\frac{3 \pi}{4}, & z = 1\\{\tilde \infty}, & z = 0\\ \end{cases}
4e4380
RD ⁣(0,y,z)=y3/2{3(E ⁣(1zy)zyK ⁣(1zy))zy(1zy),z0  and  zy3π4,z=y~,z=0R_D\!\left(0, y, z\right) = {y}^{-3 / 2} \begin{cases} \frac{3 \left(E\!\left(1 - \frac{z}{y}\right) - \frac{z}{y} K\!\left(1 - \frac{z}{y}\right)\right)}{\frac{z}{y} \left(1 - \frac{z}{y}\right)}, & z \ne 0 \;\mathbin{\operatorname{and}}\; z \ne y\\\frac{3 \pi}{4}, & z = y\\{\tilde \infty}, & z = 0\\ \end{cases}
8d0629
RD ⁣(0,y,z)=z3/2{3(K ⁣(1yz)E ⁣(1yz))1yz,yz3π4,y=zR_D\!\left(0, y, z\right) = {z}^{-3 / 2} \begin{cases} \frac{3 \left(K\!\left(1 - \frac{y}{z}\right) - E\!\left(1 - \frac{y}{z}\right)\right)}{1 - \frac{y}{z}}, & y \ne z\\\frac{3 \pi}{4}, & y = z\\ \end{cases}
c85c2f
RD ⁣(x,y,y)={32(yx)(RC ⁣(x,y)xy),xyx3/2,x=yR_D\!\left(x, y, y\right) = \begin{cases} \frac{3}{2 \left(y - x\right)} \left(R_C\!\left(x, y\right) - \frac{\sqrt{x}}{y}\right), & x \ne y\\{x}^{-3 / 2}, & x = y\\ \end{cases}
771801
RD ⁣(x,x,y)={3yx(RC ⁣(y,x)1y),xyx3/2,x=yR_D\!\left(x, x, y\right) = \begin{cases} \frac{3}{y - x} \left(R_C\!\left(y, x\right) - \frac{1}{\sqrt{y}}\right), & x \ne y\\{x}^{-3 / 2}, & x = y\\ \end{cases}
ccb4d1
RD ⁣(x,x,x)=x3/2R_D\!\left(x, x, x\right) = {x}^{-3 / 2}
f68409
RD ⁣(x,y,z)=iRD ⁣(x,y,z)R_D\!\left(-x, -y, -z\right) = i R_D\!\left(x, y, z\right)
12b1d0
RD ⁣(x,y,z)=iRD ⁣(x,y,z)R_D\!\left(-x, -y, z\right) = -\overline{i R_D\!\left(x, y, -z\right)}

The integral of the third kind RJ

Symmetry and scale invariance

655a2b
RJ ⁣(x,y,z,w)=RJ ⁣(x,z,y,w)=RJ ⁣(y,x,z,w)=RJ ⁣(y,z,x,w)=RJ ⁣(z,x,y,w)=RJ ⁣(z,y,x,w)R_J\!\left(x, y, z, w\right) = R_J\!\left(x, z, y, w\right) = R_J\!\left(y, x, z, w\right) = R_J\!\left(y, z, x, w\right) = R_J\!\left(z, x, y, w\right) = R_J\!\left(z, y, x, w\right)
4e21c7
RJ ⁣(λx,λy,λz,λw)=λ3/2RJ ⁣(x,y,z,w)R_J\!\left(\lambda x, \lambda y, \lambda z, \lambda w\right) = {\lambda}^{-3 / 2} R_J\!\left(x, y, z, w\right)

Particular constant values

55cd70
RJ ⁣(0,0,0,0)=~R_J\!\left(0, 0, 0, 0\right) = {\tilde \infty}
f1fd51
RJ ⁣(0,0,0,1)=~R_J\!\left(0, 0, 0, 1\right) = {\tilde \infty}
b891d1
RJ ⁣(0,0,1,1)=R_J\!\left(0, 0, 1, 1\right) = \infty
64a808
RJ ⁣(0,1,1,1)=3π4R_J\!\left(0, 1, 1, 1\right) = \frac{3 \pi}{4}
e9d5a9
RJ ⁣(1,1,1,1)=1R_J\!\left(1, 1, 1, 1\right) = 1
b07652
RJ ⁣(1,1,1,0)=R_J\!\left(1, 1, 1, 0\right) = \infty
e60205
RJ ⁣(0,1,1,0)=~R_J\!\left(0, 1, 1, 0\right) = {\tilde \infty}
522f54
RJ ⁣(0,1,1,2)=3π4+22R_J\!\left(0, 1, 1, 2\right) = \frac{3 \pi}{4 + 2 \sqrt{2}}
b1c84e
RJ ⁣(1,1,1,2)=33π4R_J\!\left(1, 1, 1, 2\right) = 3 - \frac{3 \pi}{4}
a9f190
RJ ⁣(1,1,2,2)=3log ⁣(1+2)322R_J\!\left(1, 1, 2, 2\right) = 3 \log\!\left(1 + \sqrt{2}\right) - \frac{3 \sqrt{2}}{2}
397051
RJ ⁣(1,2,2,2)=3π834R_J\!\left(1, 2, 2, 2\right) = \frac{3 \pi}{8} - \frac{3}{4}
6e9544
RJ ⁣(1,1,2,4)=log ⁣(1+2)2π8R_J\!\left(1, 1, 2, 4\right) = \log\!\left(1 + \sqrt{2}\right) - \frac{\sqrt{2} \pi}{8}
a1414f
RJ ⁣(1,2,2,1)=33π4R_J\!\left(1, 2, 2, 1\right) = 3 - \frac{3 \pi}{4}
9f2b18
RJ ⁣(0,1,2,1)=32π3/2(Γ ⁣(14))2R_J\!\left(0, 1, 2, 1\right) = \frac{3 \sqrt{2} {\pi}^{3 / 2}}{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}
c05ed8
RJ ⁣(0,1,2,2)=32(Γ ⁣(14))216π32π3/22(Γ ⁣(14))2R_J\!\left(0, 1, 2, 2\right) = \frac{3 \sqrt{2} {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{16 \sqrt{\pi}} - \frac{3 \sqrt{2} {\pi}^{3 / 2}}{2 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}
7f8a58
RJ ⁣(0,1,2,2)=3(Γ ⁣(14))216πR_J\!\left(0, 1, 2, \sqrt{2}\right) = \frac{3 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{16 \sqrt{\pi}}
44d300
RJ ⁣(1,2,2,4)=(943)π24R_J\!\left(1, 2, 2, 4\right) = \frac{\left(9 - 4 \sqrt{3}\right) \pi}{24}
1b6362
RJ ⁣(0,0,1,1)=R_J\!\left(0, 0, 1, -1\right) = -\infty
fd3017
RJ ⁣(0,0,1,1)=iR_J\!\left(0, 0, -1, 1\right) = -i \infty
3567c5
RJ ⁣(0,0,1,1)=iR_J\!\left(0, 0, -1, -1\right) = i \infty
62b0c4
RJ ⁣(0,1,1,1)=3(Γ ⁣(14))282π(1i)32π3/22(Γ ⁣(14))2(1+i)R_J\!\left(0, -1, 1, 1\right) = \frac{3 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{8 \sqrt{2 \pi}} \left(1 - i\right) - \frac{3 \sqrt{2} {\pi}^{3 / 2}}{2 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}} \left(1 + i\right)
b468f3
RJ ⁣(0,1,1,1)=3π4(1+i)R_J\!\left(0, 1, 1, -1\right) = -\frac{3 \pi}{4} \left(1 + i\right)
78131f
RJ ⁣(0,1,1,1)=3π4(1+i)R_J\!\left(0, -1, -1, 1\right) = -\frac{3 \pi}{4} \left(1 + i\right)
cdee01
RJ ⁣(0,1,1,1)=3π4iR_J\!\left(0, -1, -1, -1\right) = \frac{3 \pi}{4} i
e04867
RJ ⁣(1,1,1,1)=32log ⁣(1+2)43232πi8R_J\!\left(1, 1, 1, -1\right) = \frac{3 \sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{4} - \frac{3}{2} - \frac{3 \sqrt{2} \pi i}{8}
534335
RJ ⁣(1,1,1,1)=32π8+(32log ⁣(1+2)432)iR_J\!\left(1, 1, -1, -1\right) = -\frac{3 \sqrt{2} \pi}{8} + \left(\frac{3 \sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{4} - \frac{3}{2}\right) i
303827
RJ ⁣(1,1,1,1)=3432log ⁣(1+2)8+32πi16R_J\!\left(1, -1, -1, -1\right) = -\frac{3}{4} - \frac{3 \sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{8} + \frac{3 \sqrt{2} \pi i}{16}
a091d1
RJ ⁣(1,1,1,1)=iR_J\!\left(-1, -1, -1, -1\right) = i
4c1db8
RJ ⁣(1,1,1,1)=32log ⁣(1+2)43232πi8R_J\!\left(1, -1, -1, 1\right) = \frac{3 \sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{4} - \frac{3}{2} - \frac{3 \sqrt{2} \pi i}{8}
1eaaed
RJ ⁣(0,i,i,1)=3(Γ ⁣(14))28πR_J\!\left(0, i, -i, 1\right) = \frac{3 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{8 \sqrt{\pi}}

Special parametric cases

e1a3cb
RJ ⁣(0,0,z,w)={sgn ⁣(1zw),z0  and  w0~,otherwiseR_J\!\left(0, 0, z, w\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{\sqrt{z} w}\right) \infty, & z \ne 0 \;\mathbin{\operatorname{and}}\; w \ne 0\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}
3dd30a
RJ ⁣(x,y,z,z)=RD ⁣(x,y,z)R_J\!\left(x, y, z, z\right) = R_D\!\left(x, y, z\right)
5c6f10
RJ ⁣(x,x,x,w)=RD ⁣(w,w,x)R_J\!\left(x, x, x, w\right) = R_D\!\left(w, w, x\right)
d4b12e
RJ ⁣(x,y,y,w)={3wy(RC ⁣(x,y)RC ⁣(x,w)),yw32(yx)(RC ⁣(x,y)xy),y=w  and  xyx3/2,x=y=wR_J\!\left(x, y, y, w\right) = \begin{cases} \frac{3}{w - y} \left(R_C\!\left(x, y\right) - R_C\!\left(x, w\right)\right), & y \ne w\\\frac{3}{2 \left(y - x\right)} \left(R_C\!\left(x, y\right) - \frac{\sqrt{x}}{y}\right), & y = w \;\mathbin{\operatorname{and}}\; x \ne y\\{x}^{-3 / 2}, & x = y = w\\ \end{cases}
1faf7a
RJ ⁣(x,x,x,w)={3xw(RC ⁣(x,w)1x),xww3/2,x=wR_J\!\left(x, x, x, w\right) = \begin{cases} \frac{3}{x - w} \left(R_C\!\left(x, w\right) - \frac{1}{\sqrt{x}}\right), & x \ne w\\{w}^{-3 / 2}, & x = w\\ \end{cases}
0aa9ac
RJ ⁣(x,w,w,w)={32(wx)(RC ⁣(x,w)xw),xwx3/2,x=wR_J\!\left(x, w, w, w\right) = \begin{cases} \frac{3}{2 \left(w - x\right)} \left(R_C\!\left(x, w\right) - \frac{\sqrt{x}}{w}\right), & x \ne w\\{x}^{-3 / 2}, & x = w\\ \end{cases}
f6b4a2
RJ ⁣(0,x,x,w)=3π2(xw+wx)R_J\!\left(0, x, x, w\right) = \frac{3 \pi}{2 \left(x \sqrt{w} + w \sqrt{x}\right)}
3b6175
RJ ⁣(0,y,z,yz)=32yzRF ⁣(0,y,z)R_J\!\left(0, y, z, \sqrt{y} \sqrt{z}\right) = \frac{3}{2 \sqrt{y} \sqrt{z}} R_F\!\left(0, y, z\right)
4c882a
RJ ⁣(x,x,x,x)=x3/2R_J\!\left(x, x, x, x\right) = {x}^{-3 / 2}
64d87a
RJ ⁣(x,y,z,w)=iRJ ⁣(x,y,z,w)R_J\!\left(-x, -y, -z, -w\right) = i R_J\!\left(x, y, z, w\right)
849751
RJ ⁣(x,y,z,w)=iRJ ⁣(x,y,z,w)R_J\!\left(-x, -y, -z, w\right) = -\overline{i R_J\!\left(x, y, z, -w\right)}

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC