RC(λx,λy)=λ−1/2RC(x,y)
Assumptions:x∈Candy∈Candλ∈(0,∞)
TeX:
R_C\!\left(\lambda x, \lambda y\right) = {\lambda}^{-1 / 2} R_C\!\left(x, y\right)
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \lambda \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | RC(x,y) | Degenerate Carlson symmetric elliptic integral of the first kind |
| Pow | ab | Power |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
Source code for this entry:
Entry(ID("a839d5"),
Formula(Equal(CarlsonRC(Mul(lamda, x), Mul(lamda, y)), Mul(Pow(lamda, Neg(Div(1, 2))), CarlsonRC(x, y)))),
Variables(x, y, lamda),
Assumptions(And(Element(x, CC), Element(y, CC), Element(lamda, OpenInterval(0, Infinity)))))