Fungrim home page

Fungrim entry: 7cbe17

RC ⁣(x,0)={sgn ⁣(1x),x0~,x=0R_C\!\left(x, 0\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{\sqrt{x}}\right) \infty, & x \ne 0\\{\tilde \infty}, & x = 0\\ \end{cases}
Assumptions:xCx \in \mathbb{C}
R_C\!\left(x, 0\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{\sqrt{x}}\right) \infty, & x \ne 0\\{\tilde \infty}, & x = 0\\ \end{cases}

x \in \mathbb{C}
Fungrim symbol Notation Short description
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Signsgn(z)\operatorname{sgn}(z) Sign function
Sqrtz\sqrt{z} Principal square root
Infinity\infty Positive infinity
UnsignedInfinity~{\tilde \infty} Unsigned infinity
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(CarlsonRC(x, 0), Cases(Tuple(Mul(Sign(Div(1, Sqrt(x))), Infinity), NotEqual(x, 0)), Tuple(UnsignedInfinity, Equal(x, 0))))),
    Assumptions(Element(x, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC