UnsignedInfinity

Input: UnsignedInfinity
$${\tilde \infty}$$

Unsigned infinity. Generally used to represent $\lim_{z \to c} f(z)$ for functions where $\lim_{z \to c} \left|f(z)\right| = \infty$ but $\lim_{z \to c} \operatorname{sgn}\!\left(f(z)\right)$ is undefined.

Symbolic evaluation examples

Input: Div(1, 0)
$$\frac{1}{0}$$
Output: UnsignedInfinity   (evaluated by pygrim in 0.0001 s)
$${\tilde \infty}$$

UnsignedInfinity is the result of division by zero.

Input: Tuple(Abs(UnsignedInfinity), Sign(UnsignedInfinity))
$$\left(\left|{\tilde \infty}\right|, \operatorname{sgn}({\tilde \infty})\right)$$
Output: Tuple(Infinity, Undefined)   (evaluated by pygrim in 0.0001 s)
$$\left(\infty, \operatorname{Undefined}\right)$$

UnsignedInfinity has infinite magnitude, but undefined sign.

Input: Tuple(Infinity * UnsignedInfinity, UnsignedInfinity * UnsignedInfinity)
$$\left(\infty {\tilde \infty}, {\tilde \infty} {\tilde \infty}\right)$$
Output: Tuple(UnsignedInfinity, UnsignedInfinity)   (evaluated by pygrim in 0.0011 s)
$$\left({\tilde \infty}, {\tilde \infty}\right)$$

Arithmetic involving infinities is well-defined when the limits are unambiguous

Input: Tuple(UnsignedInfinity + UnsignedInfinity, 0 * UnsignedInfinity)
$$\left({\tilde \infty} + {\tilde \infty}, 0 {\tilde \infty}\right)$$
Output: Tuple(Undefined, Undefined)   (evaluated by pygrim in 0.0005 s)
$$\left(\operatorname{Undefined}, \operatorname{Undefined}\right)$$

Arithmetic involving infinities is undefined when the limits are ambiguous.

Last updated: 2020-03-06 00:22:16