All

Input: All(f(x), ForElement(x, S))
$$f(x) \;\text{ for all } x \in S$$

True if $f(x)$ is true for all $x$ in $S$, and false otherwise.

Input: All(f(x), ForElement(x, S), P(x))
$$f(x) \;\text{ for all } x \in S \text{ with } P(x)$$

True if $f(x)$ is true for all $x$ in $S$ satisfying the condition $P(x)$, and false otherwise.

Input: All(GreaterEqual(Exp(x), 1), ForElement(x, RR), GreaterEqual(x, 0))
$${e}^{x} \ge 1 \;\text{ for all } x \in \mathbb{R} \text{ with } x \ge 0$$

An example of a quantified formula.

Input: All(Implies(GreaterEqual(x, 0), GreaterEqual(Exp(x), 1)), ForElement(x, RR))
$$\left(x \ge 0\right) \implies \left({e}^{x} \ge 1\right) \;\text{ for all } x \in \mathbb{R}$$

Logically equivalent to the previous example.

Input: All(Implies(And(Element(x, RR), GreaterEqual(x, 0)), GreaterEqual(Exp(x), 1)), For(x))
$$\left(x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \ge 0\right) \implies \left({e}^{x} \ge 1\right) \;\text{ for all } x$$

Normally, the domain of the bound variable should be specified with a ForElement expression, but a raw For(x) can be used to quantify over the entire universe. This form is acceptable when the Implies expression contains a domain statement.

Input: Equivalent(All(P(x), ForElement(x, S)), NotElement(False, Set(P(x), ForElement(x, S))))
$$\left(P(x) \;\text{ for all } x \in S\right) \iff \left(\operatorname{False} \notin \left\{ P(x) : x \in S \right\}\right)$$

Equivalent characterization of this operator.

Input: Equivalent(All(P(x), ForElement(x, S), Q(x)), NotElement(False, Set(P(x), ForElement(x, S), Q(x))))
$$\left(P(x) \;\text{ for all } x \in S \text{ with } Q(x)\right) \iff \left(\operatorname{False} \notin \left\{ P(x) : x \in S \,\mathbin{\operatorname{and}}\, Q(x) \right\}\right)$$

Equivalent characterization of this operator.

Last updated: 2020-03-06 00:22:16