CurvePath

Input: CurvePath(f(t), For(t, a, b))
$$\left(f(t),\, t : a \rightsquigarrow b\right)$$

Represents the path traced by $f(t)$ as $t$ follows the path $a \rightsquigarrow b$.

Input: CurvePath(R*Exp(ConstI*t), For(t, 0, 2*Pi))
$$\left(R {e}^{i t},\, t : 0 \rightsquigarrow 2 \pi\right)$$

Represents the circular path counterclockwise around the origin, starting at $R$.

Input: CurvePath(R*Exp(ConstI*t), For(t, 0, -(2*Pi)))
$$\left(R {e}^{i t},\, t : 0 \rightsquigarrow -2 \pi\right)$$

Represents the circular path clockwise around the origin, starting at $R$.

Input: Path(+Infinity, CurvePath(Exp(ConstI*t), For(t, Pi/2, 3*Pi/2)), +Infinity)
$$+\infty \rightsquigarrow \left({e}^{i t},\, t : \pi / 2 \rightsquigarrow 3 \pi / 2\right) \rightsquigarrow +\infty$$

Represents the Hankel contour starting at $+\infty$, moving along a straight line above the real axis to $i$, moving in a half-circle around the origin to $-i$, and returning to $+\infty$ along a straight line below the real axis.

Last updated: 2020-03-06 00:22:16