ArgMinUnique

Input: ArgMinUnique(f(x), ForElement(x, S))
$$\mathop{\operatorname{arg\,min*}}\limits_{x \in S} f(x)$$

Gives the unique $x \in S$ such that $f(x) = \mathop{\min}\limits_{t \in S} f(t)$. The result is $\operatorname{Undefined}$ if such a value does not exist or is not unique.

Input: ArgMinUnique(f(x), ForElement(x, S), P(x))
$$\mathop{\operatorname{arg\,min*}}\limits_{x \in S,\,P(x)} f(x)$$

Gives the unique $x \in S$ such that $f(x) = \mathop{\min}\limits_{t \in S,\,P(t)} f(t)$. The result is $\operatorname{Undefined}$ if such a value does not exist or is not unique.

Last updated: 2020-03-06 00:22:16