CommutativeRings

Input: CommutativeRings
$$\operatorname{CommutativeRings}$$

This abstract set has as elements all sets satisfying the ring axioms with commutative multiplication.

Input: Element(ZZ, CommutativeRings)
$$\mathbb{Z} \in \operatorname{CommutativeRings}$$

An example of a commutative ring.

Input: NotElement(Matrices(ZZ, 2, 2), CommutativeRings)
$$\operatorname{M}_{2 \times 2}\!\left(\mathbb{Z}\right) \notin \operatorname{CommutativeRings}$$

An example of a noncommutative ring.

Input: Implies(And(Element(R, CommutativeRings), Elements(x, y, R)), Equal((x+y)**2, x**2+2*x*y+y**2))
$$\left(R \in \operatorname{CommutativeRings} \;\mathbin{\operatorname{and}}\; x, y \in R\right) \implies \left({\left(x + y\right)}^{2} = {x}^{2} + 2 x y + {y}^{2}\right)$$

An identity valid in commutative rings.

Last updated: 2020-03-06 00:22:16