Infinity
Input: Infinity
$$\infty$$Positive infinity.
Input: -Infinity
$$-\infty$$Negative infinity.
Symbolic evaluation examples
$$\left(\infty + 3 + 4 i, i \infty - 5, 2 i \infty\right)$$
Output: Tuple(Infinity, Mul(ConstI, Infinity), Mul(ConstI, Infinity)) (evaluated by pygrim in 0.0102 s)
$$\left(\infty, i \infty, i \infty\right)$$Infinities absorb complex numbers
$$\left(\infty + \infty, \infty \infty, -\infty + \left(-\infty\right)\right)$$$$\left(\infty, \infty, -\infty\right)$$
Arithmetic involving infinities is well-defined when the limits are unambiguous
$$\left(\infty - \infty, \frac{\infty}{\infty}, 0 \infty\right)$$$$\left(\operatorname{Undefined}, \operatorname{Undefined}, \operatorname{Undefined}\right)$$
Arithmetic involving infinities is undefined when the limits are ambiguous.
Last updated: 2020-03-06 00:22:16