Grim
reference
(alpha)
Home
Language syntax
Variables and iteration
For
ForElement
Repeat
Step
Fun
Where
Def
Booleans and logic
Equal
NotEqual
True
False
Not
And
Or
Equivalent
Implies
Exists
All
Cases
Otherwise
Tuples, lists and sets
Tuple
List
Set
Item
Element
NotElement
Length
Cardinality
Concatenation
Union
Intersection
SetMinus
Subset
SubsetEqual
CartesianProduct
CartesianPower
Sets
PowerSet
Tuples
Universe
Undefined
Numbers and arithmetic
Sets of numbers
ZZ
QQ
RR
CC
PP
AlgebraicNumbers
Particular numbers
Decimal
Pi
ConstI
ConstE
ConstGamma
GoldenRatio
ConstCatalan
Arithmetic operations
Pos
Neg
Add
Sub
Mul
Div
Pow
Sqrt
Inequalities
Less
LessEqual
Greater
GreaterEqual
Ranges and intervals
ZZGreaterEqual
ZZLessEqual
Range
ClosedInterval
OpenInterval
ClosedOpenInterval
OpenClosedInterval
Infinities
Infinity
UnsignedInfinity
Operators and calculus
Sums and products
Sum
Product
PrimeSum
PrimeProduct
DivisorSum
DivisorProduct
Solutions and zeros
Zeros
UniqueZero
Solutions
UniqueSolution
Extreme values
Supremum
Infimum
Minimum
Maximum
ArgMin
ArgMax
ArgMinUnique
ArgMaxUnique
Limits
Limit
SequenceLimit
RealLimit
LeftLimit
RightLimit
ComplexLimit
MeromorphicLimit
SequenceLimitInferior
SequenceLimitSuperior
Derivatives
Derivative
RealDerivative
ComplexDerivative
ComplexBranchDerivative
MeromorphicDerivative
Integrals
Integral
Complex analysis
IsHolomorphic
IsMeromorphic
ComplexZeroMultiplicity
Residue
Path
CurvePath
AnalyticContinuation
Matrices and linear algebra
Matrix
Matrix2x2
Matrix2x1
IdentityMatrix
Det
Spectrum
SingularValues
Matrices
SL2Z
SpecialLinearGroup
GeneralLinearGroup
HilbertMatrix
Special functions
Number parts and step functions
Abs
Sign
Re
Im
Arg
Conjugate
Csgn
RealAbs
Max
Min
Floor
Ceil
KroneckerDelta
Primes and divisibility
Odd
Even
CongruentMod
Divides
GCD
LCM
XGCD
PrimeNumber
PrimePi
DivisorSigma
MoebiusMu
Totient
DiscreteLog
LegendreSymbol
JacobiSymbol
KroneckerSymbol
SquaresR
LiouvilleLambda
Elementary functions
Exp
Log
Sin
Cos
Tan
Cot
Sec
Csc
Sinh
Cosh
Tanh
Coth
Sech
Csch
Asin
Acos
Atan
Acot
Asec
Acsc
Asinh
Acosh
Atanh
Acoth
Asech
Acsch
Atan2
Sinc
LambertW
LambertWPuiseuxCoefficient
Combinatorial functions
SymmetricPolynomial
Cyclotomic
Fibonacci
BernoulliB
BernoulliPolynomial
StirlingCycle
StirlingS1
StirlingS2
EulerE
EulerPolynomial
BellNumber
LandauG
PartitionsP
HardyRamanujanA
Gamma and factorials
Factorial
Binomial
Gamma
LogGamma
DoubleFactorial
RisingFactorial
FallingFactorial
HarmonicNumber
DigammaFunction
DigammaFunctionZero
BetaFunction
BarnesG
LogBarnesG
StirlingSeriesRemainder
LogBarnesGRemainder
Orthogonal polynomials
ChebyshevT
ChebyshevU
LegendrePolynomial
LegendrePolynomialZero
GaussLegendreWeight
HermitePolynomial
Exponential integrals
Erf
Erfc
Erfi
UpperGamma
LowerGamma
IncompleteBeta
IncompleteBetaRegularized
SinIntegral
LogIntegral
Bessel and Airy functions
AiryAi
AiryBi
AiryAiZero
AiryBiZero
BesselJ
BesselI
BesselY
BesselK
HankelH1
HankelH2
BesselJZero
BesselYZero
CoulombF
CoulombG
CoulombH
CoulombC
CoulombSigma
Hypergeometric functions
Hypergeometric0F1
Hypergeometric1F1
Hypergeometric2F1
Hypergeometric2F0
Hypergeometric3F2
HypergeometricU
HypergeometricUStar
Hypergeometric0F1Regularized
Hypergeometric1F1Regularized
Hypergeometric2F1Regularized
Hypergeometric3F2Regularized
HypergeometricUStarRemainder
Zeta and L-functions
RiemannZeta
RiemannZetaZero
RiemannHypothesis
RiemannXi
HurwitzZeta
LerchPhi
PolyLog
MultiZetaValue
DirichletL
DirichletLZero
DirichletLambda
DirichletCharacter
DirichletGroup
PrimitiveDirichletCharacters
GeneralizedRiemannHypothesis
ConreyGenerator
GeneralizedBernoulliB
StieltjesGamma
KeiperLiLambda
DeBruijnNewmanLambda
GaussSum
Elliptic integrals
AGM
EllipticK
EllipticE
EllipticPi
IncompleteEllipticF
IncompleteEllipticE
IncompleteEllipticPi
CarlsonRF
CarlsonRG
CarlsonRJ
CarlsonRD
CarlsonRC
Elliptic, theta and modular functions
JacobiTheta
DedekindEta
ModularJ
ModularLambda
EisensteinG
EisensteinE
DedekindSum
WeierstrassP
WeierstrassZeta
WeierstrassSigma
HilbertClassPolynomial
EulerQSeries
DedekindEtaEpsilon
ModularGroupAction
ModularGroupFundamentalDomain
ModularLambdaFundamentalDomain
PrimitiveReducedPositiveIntegralBinaryQuadraticForms
JacobiThetaEpsilon
JacobiThetaPermutation
Polynomials, series and rings
Pol
Ser
PolX
SerX
Coefficient
PolynomialDegree
Polynomials
PolynomialFractions
FormalPowerSeries
FormalLaurentSeries
FormalPuiseuxSeries
Zero
One
Characteristic
Rings
CommutativeRings
Fields
QuotientRing
SquaresR
Input:
SquaresR
(k, n)
r
k
(
n
)
r_{k}\!\left(n\right)
r
k
(
n
)
Sum of squares function.
Last updated: 2020-03-06 00:22:16