θ1(z,τ)=−in=−∞∑∞(−1)neπi((n+1/2)2τ+(2n+1)z)
Assumptions:z∈Candτ∈H
TeX:
\theta_1\!\left(z, \tau\right) = -i \sum_{n=-\infty}^{\infty} {\left(-1\right)}^{n} {e}^{\pi i \left({\left(n + 1 / 2\right)}^{2} \tau + \left(2 n + 1\right) z\right)}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| JacobiTheta1 | θ1(z,τ) | Jacobi theta function | 
| ConstI | i | Imaginary unit | 
| Pow | ab | Power | 
| Exp | ez | Exponential function | 
| ConstPi | π | The constant pi (3.14...) | 
| Infinity | ∞ | Positive infinity | 
| CC | C | Complex numbers | 
| HH | H | Upper complex half-plane | 
Source code for this entry:
Entry(ID("ed4ce5"),
    Formula(Equal(JacobiTheta1(z, tau), Mul(Neg(ConstI), Sum(Mul(Pow(-1, n), Exp(Mul(Mul(ConstPi, ConstI), Add(Mul(Pow(Add(n, Div(1, 2)), 2), tau), Mul(Add(Mul(2, n), 1), z))))), Tuple(n, Neg(Infinity), Infinity))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))