Assumptions:
TeX:
\theta_1\!\left(z + m + n \tau, \tau\right) = {\left(-1\right)}^{m + n} {e}^{-\pi i \left(\tau {n}^{2} + 2 n z\right)} \theta_1\!\left(z, \tau\right)
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, m \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta1 | Jacobi theta function | |
| Pow | Power | |
| Exp | Exponential function | |
| ConstPi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("43fa0e"),
Formula(Equal(JacobiTheta1(Add(z, Add(m, Mul(n, tau))), tau), Mul(Mul(Pow(-1, Add(m, n)), Exp(Neg(Mul(Mul(ConstPi, ConstI), Add(Mul(tau, Pow(n, 2)), Mul(Mul(2, n), z)))))), JacobiTheta1(z, tau)))),
Variables(z, tau, m, n),
Assumptions(And(Element(z, CC), Element(tau, HH), Element(m, ZZ), Element(n, ZZ))))