Assumptions:
TeX:
\theta_1\!\left(z, \tau\right) = 2 \sum_{n=0}^{\infty} {\left(-1\right)}^{n} {e}^{\pi i {\left(n + 1 / 2\right)}^{2} \tau} \sin\!\left(\left(2 n + 1\right) \pi z\right) z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta1 | Jacobi theta function | |
Pow | Power | |
Exp | Exponential function | |
ConstPi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Sin | Sine | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("2ba423"), Formula(Equal(JacobiTheta1(z, tau), Mul(2, Sum(Mul(Mul(Pow(-1, n), Exp(Mul(Mul(Mul(ConstPi, ConstI), Pow(Add(n, Div(1, 2)), 2)), tau))), Sin(Mul(Mul(Add(Mul(2, n), 1), ConstPi), z))), Tuple(n, 0, Infinity))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))