Fungrim home page

Fungrim entry: 2ba423

θ1 ⁣(z,τ)=2n=0(1)neπi(n+1/2)2τsin ⁣((2n+1)πz)\theta_1\!\left(z, \tau\right) = 2 \sum_{n=0}^{\infty} {\left(-1\right)}^{n} {e}^{\pi i {\left(n + 1 / 2\right)}^{2} \tau} \sin\!\left(\left(2 n + 1\right) \pi z\right)
Assumptions:zCandτHz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
TeX:
\theta_1\!\left(z, \tau\right) = 2 \sum_{n=0}^{\infty} {\left(-1\right)}^{n} {e}^{\pi i {\left(n + 1 / 2\right)}^{2} \tau} \sin\!\left(\left(2 n + 1\right) \pi z\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
JacobiTheta1θ1 ⁣(z,τ)\theta_1\!\left(z, \tau\right) Jacobi theta function
Powab{a}^{b} Power
Expez{e}^{z} Exponential function
ConstPiπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Sinsin ⁣(z)\sin\!\left(z\right) Sine
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("2ba423"),
    Formula(Equal(JacobiTheta1(z, tau), Mul(2, Sum(Mul(Mul(Pow(-1, n), Exp(Mul(Mul(Mul(ConstPi, ConstI), Pow(Add(n, Div(1, 2)), 2)), tau))), Sin(Mul(Mul(Add(Mul(2, n), 1), ConstPi), z))), Tuple(n, 0, Infinity))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC