Fungrim home page

Fungrim entry: f3e75c

θ3 ⁣(z,τ)=1+2n=1eπin2τcos ⁣(2nπz)\theta_3\!\left(z, \tau\right) = 1 + 2 \sum_{n=1}^{\infty} {e}^{\pi i {n}^{2} \tau} \cos\!\left(2 n \pi z\right)
Assumptions:zCandτHz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
TeX:
\theta_3\!\left(z, \tau\right) = 1 + 2 \sum_{n=1}^{\infty} {e}^{\pi i {n}^{2} \tau} \cos\!\left(2 n \pi z\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
JacobiTheta3θ3 ⁣(z,τ)\theta_3\!\left(z, \tau\right) Jacobi theta function
Expez{e}^{z} Exponential function
ConstPiπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Powab{a}^{b} Power
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("f3e75c"),
    Formula(Equal(JacobiTheta3(z, tau), Add(1, Mul(2, Sum(Mul(Exp(Mul(Mul(Mul(ConstPi, ConstI), Pow(n, 2)), tau)), Cos(Mul(Mul(Mul(2, n), ConstPi), z))), Tuple(n, 1, Infinity)))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC