Assumptions:
TeX:
\theta_2\!\left(z, \tau\right) = 2 \sum_{n=0}^{\infty} {e}^{\pi i {\left(n + 1 / 2\right)}^{2} \tau} \cos\!\left(\left(2 n + 1\right) \pi z\right)
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta2 | Jacobi theta function | |
| Exp | Exponential function | |
| ConstPi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("06633e"),
Formula(Equal(JacobiTheta2(z, tau), Mul(2, Sum(Mul(Exp(Mul(Mul(Mul(ConstPi, ConstI), Pow(Add(n, Div(1, 2)), 2)), tau)), Cos(Mul(Mul(Add(Mul(2, n), 1), ConstPi), z))), Tuple(n, 0, Infinity))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))