Fungrim home page

Fungrim entry: ed4ce5

θ1 ⁣(z,τ)=in=(1)neπi((n+1/2)2τ+(2n+1)z)\theta_1\!\left(z, \tau\right) = -i \sum_{n=-\infty}^{\infty} {\left(-1\right)}^{n} {e}^{\pi i \left({\left(n + 1 / 2\right)}^{2} \tau + \left(2 n + 1\right) z\right)}
Assumptions:zCandτHz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
TeX:
\theta_1\!\left(z, \tau\right) = -i \sum_{n=-\infty}^{\infty} {\left(-1\right)}^{n} {e}^{\pi i \left({\left(n + 1 / 2\right)}^{2} \tau + \left(2 n + 1\right) z\right)}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
JacobiTheta1θ1 ⁣(z,τ)\theta_1\!\left(z, \tau\right) Jacobi theta function
ConstIii Imaginary unit
Powab{a}^{b} Power
Expez{e}^{z} Exponential function
ConstPiπ\pi The constant pi (3.14...)
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("ed4ce5"),
    Formula(Equal(JacobiTheta1(z, tau), Mul(Neg(ConstI), Sum(Mul(Pow(-1, n), Exp(Mul(Mul(ConstPi, ConstI), Add(Mul(Pow(Add(n, Div(1, 2)), 2), tau), Mul(Add(Mul(2, n), 1), z))))), Tuple(n, Neg(Infinity), Infinity))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC