Assumptions:
TeX:
\theta_4\!\left(z, \tau\right) = 1 + 2 \sum_{n=1}^{\infty} {\left(-1\right)}^{n} {e}^{\pi i {n}^{2} \tau} \cos\!\left(2 n \pi z\right) z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta4 | Jacobi theta function | |
Pow | Power | |
Exp | Exponential function | |
ConstPi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("8a34d1"), Formula(Equal(JacobiTheta4(z, tau), Add(1, Mul(2, Sum(Mul(Mul(Pow(-1, n), Exp(Mul(Mul(Mul(ConstPi, ConstI), Pow(n, 2)), tau))), Cos(Mul(Mul(Mul(2, n), ConstPi), z))), Tuple(n, 1, Infinity)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))