Table of contents: Definitions - Tables - Symmetry - Recurrence relations - Algebraic formulas - Matrix formulas - Generating functions - Sum representations - Elementary functions - Chebyshev polynomials - Hypergeometric functions - Finite sums - Divisibility - Asymptotics and limits - Bounds and inequalities - Reciprocal series
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Entry(ID("fe11ce"), SymbolDefinition(Fibonacci, Fibonacci(n), "Fibonacci number"), References("http://oeis.org/A000045"))
F_{n} = \text{A000045}\!\left(n\right) n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
SloaneA | A00000X(n) | Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("373aa1"), Formula(Equal(Fibonacci(n), SloaneA("A000045", n))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
|
|
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Entry(ID("b506ad"), Description("Table of", Fibonacci(n), "for", LessEqual(0, n, 100)), Table(Var(n), TableValueHeadings(n, Fibonacci(n)), TableSplit(2), List(Tuple(0, 0), Tuple(1, 1), Tuple(2, 1), Tuple(3, 2), Tuple(4, 3), Tuple(5, 5), Tuple(6, 8), Tuple(7, 13), Tuple(8, 21), Tuple(9, 34), Tuple(10, 55), Tuple(11, 89), Tuple(12, 144), Tuple(13, 233), Tuple(14, 377), Tuple(15, 610), Tuple(16, 987), Tuple(17, 1597), Tuple(18, 2584), Tuple(19, 4181), Tuple(20, 6765), Tuple(21, 10946), Tuple(22, 17711), Tuple(23, 28657), Tuple(24, 46368), Tuple(25, 75025), Tuple(26, 121393), Tuple(27, 196418), Tuple(28, 317811), Tuple(29, 514229), Tuple(30, 832040), Tuple(31, 1346269), Tuple(32, 2178309), Tuple(33, 3524578), Tuple(34, 5702887), Tuple(35, 9227465), Tuple(36, 14930352), Tuple(37, 24157817), Tuple(38, 39088169), Tuple(39, 63245986), Tuple(40, 102334155), Tuple(41, 165580141), Tuple(42, 267914296), Tuple(43, 433494437), Tuple(44, 701408733), Tuple(45, 1134903170), Tuple(46, 1836311903), Tuple(47, 2971215073), Tuple(48, 4807526976), Tuple(49, 7778742049), Tuple(50, 12586269025), Tuple(51, 20365011074), Tuple(52, 32951280099), Tuple(53, 53316291173), Tuple(54, 86267571272), Tuple(55, 139583862445), Tuple(56, 225851433717), Tuple(57, 365435296162), Tuple(58, 591286729879), Tuple(59, 956722026041), Tuple(60, 1548008755920), Tuple(61, 2504730781961), Tuple(62, 4052739537881), Tuple(63, 6557470319842), Tuple(64, 10610209857723), Tuple(65, 17167680177565), Tuple(66, 27777890035288), Tuple(67, 44945570212853), Tuple(68, 72723460248141), Tuple(69, 117669030460994), Tuple(70, 190392490709135), Tuple(71, 308061521170129), Tuple(72, 498454011879264), Tuple(73, 806515533049393), Tuple(74, 1304969544928657), Tuple(75, 2111485077978050), Tuple(76, 3416454622906707), Tuple(77, 5527939700884757), Tuple(78, 8944394323791464), Tuple(79, 14472334024676221), Tuple(80, 23416728348467685), Tuple(81, 37889062373143906), Tuple(82, 61305790721611591), Tuple(83, 99194853094755497), Tuple(84, 160500643816367088), Tuple(85, 259695496911122585), Tuple(86, 420196140727489673), Tuple(87, 679891637638612258), Tuple(88, 1100087778366101931), Tuple(89, 1779979416004714189), Tuple(90, 2880067194370816120), Tuple(91, 4660046610375530309), Tuple(92, 7540113804746346429), Tuple(93, 12200160415121876738), Tuple(94, 19740274219868223167), Tuple(95, 31940434634990099905), Tuple(96, 51680708854858323072), Tuple(97, 83621143489848422977), Tuple(98, 135301852344706746049), Tuple(99, 218922995834555169026), Tuple(100, 354224848179261915075))))
|
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
Entry(ID("5818e3"), Description("Table of", Fibonacci(Pow(10, n)), "to 50 digits for", LessEqual(0, n, 20)), Table(Var(n), TableSplit(1), TableValueHeadings(n, NearestDecimal(Fibonacci(Pow(10, n)), 50)), List(Tuple(0, Decimal("1")), Tuple(1, Decimal("55")), Tuple(2, Decimal("354224848179261915075")), Tuple(3, Decimal("4.3466557686937456435688527675040625802564660517372e+208")), Tuple(4, Decimal("3.3644764876431783266621612005107543310302148460680e+2089")), Tuple(5, Decimal("2.5974069347221724166155034021275915414880485386518e+20898")), Tuple(6, Decimal("1.9532821287077577316320149475962563324435429965919e+208987")), Tuple(7, Decimal("1.1298343782253997603170636377458663729448371904890e+2089876")), Tuple(8, Decimal("4.7371034734563369625489713133510386575486828937720e+20898763")), Tuple(9, Decimal("7.9523178745546834678293851961971481892555421852344e+208987639")), Tuple(10, Decimal("1.4135212296147024564096151864184089768135166603147e+2089876402")), Tuple(11, Decimal("4.4502906390486589597158064980525302063183707085571e+20898764024")), Tuple(12, Decimal("4.2584226889958835886348336943722259069350042910726e+208987640249")), Tuple(13, Decimal("2.7406444081225493607051434240988555526172053810282e+2089876402499")), Tuple(14, Decimal("3.3411188533931480763928505837976694567574715082316e+20898764024997")), Tuple(15, Decimal("2.4226142638072665895512781785852365306378154520894e+208987640249978")), Tuple(16, Decimal("9.7321259036507402774301623570261041248903959860292e+2089876402499786")), Tuple(17, Decimal("1.0652271003503856899342263856673297764435665668329e+20898764024997873")), Tuple(18, Decimal("2.6289788186792204674075064891600428077435502009263e+208987640249978733")), Tuple(19, Decimal("2.2041233236015343583064006979459206416375776690474e+2089876402499787337")), Tuple(20, Decimal("3.7820208747205569470350747417141015056709733674715e+20898764024997873376")))))
F_{-n} = {\left(-1\right)}^{n + 1} F_{n} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("ce6dd0"), Formula(Equal(Fibonacci(Neg(n)), Mul(Pow(-1, Add(n, 1)), Fibonacci(n)))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = F_{n - 1} + F_{n - 2} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("22dc6e"), Formula(Equal(Fibonacci(n), Add(Fibonacci(Sub(n, 1)), Fibonacci(Sub(n, 2))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = F_{n + 2} - F_{n + 1} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("6d437c"), Formula(Equal(Fibonacci(n), Sub(Fibonacci(Add(n, 2)), Fibonacci(Add(n, 1))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n + 1} = F_{n} + F_{n - 1} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("a8f2ac"), Formula(Equal(Fibonacci(Add(n, 1)), Add(Fibonacci(n), Fibonacci(Sub(n, 1))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n + 2} = F_{n + 1} + F_{n} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("10165f"), Formula(Equal(Fibonacci(Add(n, 2)), Add(Fibonacci(Add(n, 1)), Fibonacci(n)))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = 2 F_{n - 2} + F_{n - 3} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("7ef2c7"), Formula(Equal(Fibonacci(n), Add(Mul(2, Fibonacci(Sub(n, 2))), Fibonacci(Sub(n, 3))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = 3 F_{n - 3} + 2 F_{n - 4} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("cbfe21"), Formula(Equal(Fibonacci(n), Add(Mul(3, Fibonacci(Sub(n, 3))), Mul(2, Fibonacci(Sub(n, 4)))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = F_{m + 1} F_{n - m} + F_{m} F_{n - m - 1} m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("5cb57e"), Formula(Equal(Fibonacci(n), Add(Mul(Fibonacci(Add(m, 1)), Fibonacci(Sub(n, m))), Mul(Fibonacci(m), Fibonacci(Sub(Sub(n, m), 1)))))), Variables(m, n), Assumptions(And(Element(m, ZZ), Element(n, ZZ))))
F_{m + n} = F_{m} F_{n + 1} + F_{m - 1} F_{n} m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("a104b0"), Formula(Equal(Fibonacci(Add(m, n)), Add(Mul(Fibonacci(m), Fibonacci(Add(n, 1))), Mul(Fibonacci(Sub(m, 1)), Fibonacci(n))))), Variables(m, n), Assumptions(And(Element(m, ZZ), Element(n, ZZ))))
F_{m + n - 1} = F_{m} F_{n} + F_{m - 1} F_{n - 1} m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("70878b"), Formula(Equal(Fibonacci(Sub(Add(m, n), 1)), Add(Mul(Fibonacci(m), Fibonacci(n)), Mul(Fibonacci(Sub(m, 1)), Fibonacci(Sub(n, 1)))))), Variables(m, n), Assumptions(And(Element(m, ZZ), Element(n, ZZ))))
F_{2 n} = F_{n + 1}^{2} - F_{n - 1}^{2} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("35956b"), Formula(Equal(Fibonacci(Mul(2, n)), Sub(Pow(Fibonacci(Add(n, 1)), 2), Pow(Fibonacci(Sub(n, 1)), 2)))), Variables(n), Assumptions(Element(n, ZZ)))
F_{2 n} = \left(F_{n + 1} + F_{n - 1}\right) F_{n} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("2ca869"), Formula(Equal(Fibonacci(Mul(2, n)), Mul(Add(Fibonacci(Add(n, 1)), Fibonacci(Sub(n, 1))), Fibonacci(n)))), Variables(n), Assumptions(Element(n, ZZ)))
F_{2 n} = F_{n + 2}^{2} - F_{n + 1}^{2} - 2 F_{n}^{2} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("5745bd"), Formula(Equal(Fibonacci(Mul(2, n)), Sub(Sub(Pow(Fibonacci(Add(n, 2)), 2), Pow(Fibonacci(Add(n, 1)), 2)), Mul(2, Pow(Fibonacci(n), 2))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{2 n + 1} = F_{n + 1}^{2} + F_{n}^{2} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("fc4fd1"), Formula(Equal(Fibonacci(Add(Mul(2, n), 1)), Add(Pow(Fibonacci(Add(n, 1)), 2), Pow(Fibonacci(n), 2)))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n}^{2} = F_{n + 1} F_{n - 1} - {\left(-1\right)}^{n} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("073466"), Formula(Equal(Pow(Fibonacci(n), 2), Sub(Mul(Fibonacci(Add(n, 1)), Fibonacci(Sub(n, 1))), Pow(-1, n)))), Description("Cassini's identity"), Variables(n), Assumptions(Element(n, ZZ)))
F_{n}^{2} = F_{n + m} F_{n - m} + {\left(-1\right)}^{n + m} F_{m}^{2} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("ab563e"), Formula(Equal(Pow(Fibonacci(n), 2), Add(Mul(Fibonacci(Add(n, m)), Fibonacci(Sub(n, m))), Mul(Pow(-1, Add(n, m)), Pow(Fibonacci(m), 2))))), Description("Catalan's identity"), Variables(n, m), Assumptions(And(Element(n, ZZ), Element(m, ZZ))))
F_{n + i} F_{n + j} - F_{n} F_{n + i + j} = {\left(-1\right)}^{n} F_{i} F_{j} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; i \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; j \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("8db61e"), Formula(Equal(Sub(Mul(Fibonacci(Add(n, i)), Fibonacci(Add(n, j))), Mul(Fibonacci(n), Fibonacci(Add(Add(n, i), j)))), Mul(Mul(Pow(-1, n), Fibonacci(i)), Fibonacci(j)))), Description("Vajda's identity"), Variables(n, i, j), Assumptions(And(Element(n, ZZ), Element(i, ZZ), Element(j, ZZ))))
F_{m} F_{n + 1} - F_{m + 1} F_{n} = {\left(-1\right)}^{n} F_{m - n} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("301081"), Formula(Equal(Sub(Mul(Fibonacci(m), Fibonacci(Add(n, 1))), Mul(Fibonacci(Add(m, 1)), Fibonacci(n))), Mul(Pow(-1, n), Fibonacci(Sub(m, n))))), Description("d'Ocagne's identity"), Variables(n, m), Assumptions(And(Element(n, ZZ), Element(m, ZZ))))
F_{n} = \frac{{\varphi}^{n} - {\left(-\varphi\right)}^{-n}}{\sqrt{5}} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
GoldenRatio | φ | The golden ratio (1.618...) |
Sqrt | z | Principal square root |
ZZ | Z | Integers |
Entry(ID("24107d"), Formula(Equal(Fibonacci(n), Div(Sub(Pow(GoldenRatio, n), Pow(Neg(GoldenRatio), Neg(n))), Sqrt(5)))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = \left\lfloor \frac{{\varphi}^{n}}{\sqrt{5}} + \frac{1}{2} \right\rfloor n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
GoldenRatio | φ | The golden ratio (1.618...) |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("050fdb"), Formula(Equal(Fibonacci(n), Floor(Add(Div(Pow(GoldenRatio, n), Sqrt(5)), Div(1, 2))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
F_{n} = \frac{{\varphi}^{n} - \cos\!\left(\pi n\right) {\varphi}^{-n}}{\sqrt{5}} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
GoldenRatio | φ | The golden ratio (1.618...) |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
Sqrt | z | Principal square root |
ZZ | Z | Integers |
Entry(ID("ad0d7a"), Formula(Equal(Fibonacci(n), Div(Sub(Pow(GoldenRatio, n), Mul(Cos(Mul(Pi, n)), Pow(GoldenRatio, Neg(n)))), Sqrt(5)))), Variables(n), Assumptions(Element(n, ZZ)))
{\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}}^{n} = \begin{pmatrix} F_{n + 1} & F_{n} \\ F_{n} & F_{n - 1} \end{pmatrix} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
Matrix2x2 | (acbd) | Two by two matrix |
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("8a548e"), Formula(Equal(Pow(Matrix2x2(1, 1, 1, 0), n), Matrix2x2(Fibonacci(Add(n, 1)), Fibonacci(n), Fibonacci(n), Fibonacci(Sub(n, 1))))), Variables(n), Assumptions(Element(n, ZZ)))
\begin{pmatrix} F_{n + 1} \\ F_{n} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n} \\ F_{n - 1} \end{pmatrix} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Matrix2x2 | (acbd) | Two by two matrix |
ZZ | Z | Integers |
Entry(ID("0e2425"), Formula(Equal(Matrix2x1(Fibonacci(Add(n, 1)), Fibonacci(n)), Mul(Matrix2x2(1, 1, 1, 0), Matrix2x1(Fibonacci(n), Fibonacci(Sub(n, 1)))))), Variables(n), Assumptions(Element(n, ZZ)))
\begin{pmatrix} F_{n + m} \\ F_{n + m - 1} \end{pmatrix} = {\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}}^{m} \begin{pmatrix} F_{n} \\ F_{n - 1} \end{pmatrix} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
Matrix2x2 | (acbd) | Two by two matrix |
ZZ | Z | Integers |
Entry(ID("3a9c67"), Formula(Equal(Matrix2x1(Fibonacci(Add(n, m)), Fibonacci(Sub(Add(n, m), 1))), Mul(Pow(Matrix2x2(1, 1, 1, 0), m), Matrix2x1(Fibonacci(n), Fibonacci(Sub(n, 1)))))), Variables(n, m), Assumptions(And(Element(n, ZZ), Element(m, ZZ))))
\sum_{n=0}^{\infty} F_{n} {z}^{n} = \frac{z}{1 - z - {z}^{2}} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < \varphi - 1
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
Abs | ∣z∣ | Absolute value |
GoldenRatio | φ | The golden ratio (1.618...) |
Entry(ID("05209f"), Formula(Equal(Sum(Mul(Fibonacci(n), Pow(z, n)), For(n, 0, Infinity)), Div(z, Sub(Sub(1, z), Pow(z, 2))))), Variables(z), Assumptions(And(Element(z, CC), Less(Abs(z), Sub(GoldenRatio, 1)))))
\sum_{n=0}^{\infty} F_{n} \frac{{z}^{n}}{n !} = \frac{2}{\sqrt{5}} {e}^{z / 2} \sinh\!\left(\frac{\sqrt{5}}{2} z\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
Sqrt | z | Principal square root |
Exp | ez | Exponential function |
CC | C | Complex numbers |
Entry(ID("d0d91a"), Formula(Equal(Sum(Mul(Fibonacci(n), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)), Mul(Mul(Div(2, Sqrt(5)), Exp(Div(z, 2))), Sinh(Mul(Div(Sqrt(5), 2), z))))), Variables(z), Assumptions(Element(z, CC)))
F_{n} = \sum_{k=0}^{n - 1} {n - k - 1 \choose k} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Sum | ∑nf(n) | Sum |
Binomial | (kn) | Binomial coefficient |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("9638c1"), Formula(Equal(Fibonacci(n), Sum(Binomial(Sub(Sub(n, k), 1), k), For(k, 0, Sub(n, 1))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
F_{n} = \sum_{k=0}^{\left\lfloor \left( n - 1 \right) / 2 \right\rfloor} {n - k - 1 \choose k} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Sum | ∑nf(n) | Sum |
Binomial | (kn) | Binomial coefficient |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("d7c89c"), Formula(Equal(Fibonacci(n), Sum(Binomial(Sub(Sub(n, k), 1), k), For(k, 0, Floor(Div(Sub(n, 1), 2)))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
F_{n} = \frac{1}{{2}^{n - 1}} \sum_{k=0}^{\left\lfloor \left( n - 1 \right) / 2 \right\rfloor} {5}^{k} {n \choose 2 k + 1} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
Sum | ∑nf(n) | Sum |
Binomial | (kn) | Binomial coefficient |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("b8ed8f"), Formula(Equal(Fibonacci(n), Mul(Div(1, Pow(2, Sub(n, 1))), Sum(Mul(Pow(5, k), Binomial(n, Add(Mul(2, k), 1))), For(k, 0, Floor(Div(Sub(n, 1), 2))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
F_{n} = \frac{{e}^{n u} - \cos\!\left(\pi n\right) {e}^{-n u}}{\sqrt{5}}\; \text{ where } u = \log(\varphi) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Exp | ez | Exponential function |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
Sqrt | z | Principal square root |
Log | log(z) | Natural logarithm |
GoldenRatio | φ | The golden ratio (1.618...) |
ZZ | Z | Integers |
Entry(ID("12b336"), Formula(Equal(Fibonacci(n), Where(Div(Sub(Exp(Mul(n, u)), Mul(Cos(Mul(Pi, n)), Exp(Mul(Neg(n), u)))), Sqrt(5)), Equal(u, Log(GoldenRatio))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = \frac{2}{\sqrt{5}} \begin{cases} \sinh\!\left(n u\right), & n \text{ even}\\\cosh\!\left(n u\right), & n \text{ odd}\\ \end{cases}\; \text{ where } u = \log(\varphi) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Sqrt | z | Principal square root |
Log | log(z) | Natural logarithm |
GoldenRatio | φ | The golden ratio (1.618...) |
ZZ | Z | Integers |
Entry(ID("fd732d"), Formula(Equal(Fibonacci(n), Mul(Div(2, Sqrt(5)), Where(Cases(Tuple(Sinh(Mul(n, u)), Even(n)), Tuple(Cosh(Mul(n, u)), Odd(n))), Equal(u, Log(GoldenRatio)))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = \frac{\left(1 + \cos\!\left(\pi n\right)\right) \sinh\!\left(n u\right) + \left(1 - \cos\!\left(\pi n\right)\right) \cosh\!\left(n u\right)}{\sqrt{5}}\; \text{ where } u = \log(\varphi) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Cos | cos(z) | Cosine |
Pi | π | The constant pi (3.14...) |
Sqrt | z | Principal square root |
Log | log(z) | Natural logarithm |
GoldenRatio | φ | The golden ratio (1.618...) |
ZZ | Z | Integers |
Entry(ID("bceed4"), Formula(Equal(Fibonacci(n), Where(Div(Add(Mul(Add(1, Cos(Mul(Pi, n))), Sinh(Mul(n, u))), Mul(Sub(1, Cos(Mul(Pi, n))), Cosh(Mul(n, u)))), Sqrt(5)), Equal(u, Log(GoldenRatio))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = \frac{2}{\sqrt{5}} {\left(-i\right)}^{n} \sinh\!\left(n \left(\log(\varphi) + \frac{1}{2} \pi i\right)\right) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Sqrt | z | Principal square root |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Log | log(z) | Natural logarithm |
GoldenRatio | φ | The golden ratio (1.618...) |
Pi | π | The constant pi (3.14...) |
ZZ | Z | Integers |
Entry(ID("c4d78a"), Formula(Equal(Fibonacci(n), Mul(Mul(Div(2, Sqrt(5)), Pow(Neg(ConstI), n)), Sinh(Mul(n, Add(Log(GoldenRatio), Mul(Mul(Div(1, 2), Pi), ConstI))))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{2 n} = U_{n - 1}\!\left(\frac{3}{2}\right) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
Entry(ID("aadf90"), Formula(Equal(Fibonacci(Mul(2, n)), ChebyshevU(Sub(n, 1), Div(3, 2)))), Variables(n), Assumptions(Element(n, ZZ)))
F_{2 n + 1} = \frac{2}{\sqrt{5}} T_{2 n + 1}\!\left(\frac{\sqrt{5}}{2}\right) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Sqrt | z | Principal square root |
ChebyshevT | Tn(x) | Chebyshev polynomial of the first kind |
ZZ | Z | Integers |
Entry(ID("223ce1"), Formula(Equal(Fibonacci(Add(Mul(2, n), 1)), Mul(Div(2, Sqrt(5)), ChebyshevT(Add(Mul(2, n), 1), Div(Sqrt(5), 2))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = {i}^{n - 1} U_{n - 1}\!\left(-\frac{i}{2}\right) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
ConstI | i | Imaginary unit |
ChebyshevU | Un(x) | Chebyshev polynomial of the second kind |
ZZ | Z | Integers |
Entry(ID("ae76a3"), Formula(Equal(Fibonacci(n), Mul(Pow(ConstI, Sub(n, 1)), ChebyshevU(Sub(n, 1), Neg(Div(ConstI, 2)))))), Variables(n), Assumptions(Element(n, ZZ)))
F_{n} = \frac{n}{{2}^{n - 1}} \,{}_2F_1\!\left(\frac{1 - n}{2}, \frac{2 - n}{2}, \frac{3}{2}, 5\right) n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
ZZ | Z | Integers |
Entry(ID("1c90fb"), Formula(Equal(Fibonacci(n), Mul(Div(n, Pow(2, Sub(n, 1))), Hypergeometric2F1(Div(Sub(1, n), 2), Div(Sub(2, n), 2), Div(3, 2), 5)))), Variables(n), Assumptions(Element(n, ZZ)), References("http://functions.wolfram.com/IntegerFunctions/Fibonacci/26/01/01/0007/"))
F_{n} = \,{}_2F_1\!\left(\frac{1 - n}{2}, \frac{2 - n}{2}, 1 - n, -4\right) n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("90c290"), Formula(Equal(Fibonacci(n), Hypergeometric2F1(Div(Sub(1, n), 2), Div(Sub(2, n), 2), Sub(1, n), -4))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
\sum_{k=0}^{n} F_{k} = F_{n + 2} - 1 n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("1eb5e7"), Formula(Equal(Sum(Fibonacci(k), For(k, 0, n)), Sub(Fibonacci(Add(n, 2)), 1))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{k=0}^{n} F_{2 k} = F_{2 n + 1} - 1 n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("3bb7e4"), Formula(Equal(Sum(Fibonacci(Mul(2, k)), For(k, 0, n)), Sub(Fibonacci(Add(Mul(2, n), 1)), 1))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{k=0}^{n} F_{2 k + 1} = F_{2 n + 2} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("5eb446"), Formula(Equal(Sum(Fibonacci(Add(Mul(2, k), 1)), For(k, 0, n)), Fibonacci(Add(Mul(2, n), 2)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{k=0}^{n} F_{k}^{2} = F_{n} F_{n + 1} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("82373a"), Formula(Equal(Sum(Pow(Fibonacci(k), 2), For(k, 0, n)), Mul(Fibonacci(n), Fibonacci(Add(n, 1))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{k=0}^{n} {n \choose k} F_{k} = F_{2 n} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Binomial | (kn) | Binomial coefficient |
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("ac4d13"), Formula(Equal(Sum(Mul(Binomial(n, k), Fibonacci(k)), For(k, 0, n)), Fibonacci(Mul(2, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{k=0}^{n} {\left(-1\right)}^{k + 1} {n \choose k} F_{k} = F_{n} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Binomial | (kn) | Binomial coefficient |
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("f95561"), Formula(Equal(Sum(Mul(Mul(Pow(-1, Add(k, 1)), Binomial(n, k)), Fibonacci(k)), For(k, 0, n)), Fibonacci(n))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
\sum_{k=0}^{n} {n \choose k} {2}^{k} F_{k} = F_{3 n} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Binomial | (kn) | Binomial coefficient |
Pow | ab | Power |
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("d454a3"), Formula(Equal(Sum(Mul(Mul(Binomial(n, k), Pow(2, k)), Fibonacci(k)), For(k, 0, n)), Fibonacci(Mul(3, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
F_{d} \mid F_{d n} d \in \mathbb{Z} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("4b3947"), Formula(Divides(Fibonacci(d), Fibonacci(Mul(d, n)))), Variables(d, n), Assumptions(And(Element(d, SetMinus(ZZ, Set(0))), Element(n, ZZ))))
\gcd\!\left(F_{n}, F_{n + 1}\right) = 1 n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
GCD | gcd(a,b) | Greatest common divisor |
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("7b0abf"), Formula(Equal(GCD(Fibonacci(n), Fibonacci(Add(n, 1))), 1)), Variables(n), Assumptions(Element(n, ZZ)))
\gcd\!\left(F_{n}, F_{n + 2}\right) = 1 n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
GCD | gcd(a,b) | Greatest common divisor |
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("aaa244"), Formula(Equal(GCD(Fibonacci(n), Fibonacci(Add(n, 2))), 1)), Variables(n), Assumptions(Element(n, ZZ)))
\gcd\!\left(F_{m}, F_{n}\right) = F_{\gcd\left(m, n\right)} m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
GCD | gcd(a,b) | Greatest common divisor |
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("da45c0"), Formula(Equal(GCD(Fibonacci(m), Fibonacci(n)), Fibonacci(GCD(m, n)))), Variables(m, n), Assumptions(And(Element(m, ZZ), Element(n, ZZ))))
p \mid F_{p - \left( \frac{p}{5} \right)} p \in \mathbb{P}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
PP | P | Prime numbers |
Entry(ID("6db705"), Formula(Divides(p, Fibonacci(Sub(p, KroneckerSymbol(p, 5))))), Variables(p), Assumptions(Element(p, PP)))
F_{p} \equiv \left( \frac{p}{5} \right) \pmod {p} p \in \mathbb{P}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
PP | P | Prime numbers |
Entry(ID("c84407"), Formula(CongruentMod(Fibonacci(p), KroneckerSymbol(p, 5), p)), Variables(p), Assumptions(Element(p, PP)))
\left(x \in \left\{ F_{n} : n \in \mathbb{Z}_{\ge 0} \right\}\right) \iff \left(\sqrt{5 {x}^{2} + 4} \in \mathbb{Z} \;\mathbin{\operatorname{or}}\; \sqrt{5 {x}^{2} - 4} \in \mathbb{Z}\right) x \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Sqrt | z | Principal square root |
Pow | ab | Power |
ZZ | Z | Integers |
Entry(ID("a0206a"), Formula(Equivalent(Element(x, Set(Fibonacci(n), ForElement(n, ZZGreaterEqual(0)))), Or(Element(Sqrt(Add(Mul(5, Pow(x, 2)), 4)), ZZ), Element(Sqrt(Sub(Mul(5, Pow(x, 2)), 4)), ZZ)))), Variables(x), Assumptions(Element(x, ZZGreaterEqual(0))))
\# \left\{ k : k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \mid F_{k} \right\} = \# \mathbb{Z} n \in \mathbb{Z} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
Cardinality | #S | Set cardinality |
ZZ | Z | Integers |
Fibonacci | Fn | Fibonacci number |
Entry(ID("4ec333"), Formula(Equal(Cardinality(Set(k, For(k), And(Element(k, ZZ), Divides(n, Fibonacci(k))))), Cardinality(ZZ))), Variables(n), Assumptions(Element(n, SetMinus(ZZ, Set(0)))))
F_{n + 60} \equiv F_{n} \pmod {10} n \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZ | Z | Integers |
Entry(ID("f5f706"), Formula(CongruentMod(Fibonacci(Add(n, 60)), Fibonacci(n), 10)), Variables(n), Assumptions(Element(n, ZZ)))
\left\{ F_{n} : n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \sqrt{F_{n}} \in \mathbb{Z} \right\} = \left\{F_{0}, F_{1}, F_{2}, F_{12}\right\} = \left\{0, 1, 144\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Sqrt | z | Principal square root |
ZZ | Z | Integers |
Entry(ID("9d26d2"), Formula(Equal(Set(Fibonacci(n), For(n), And(Element(n, ZZGreaterEqual(0)), Element(Sqrt(Fibonacci(n)), ZZ))), Set(Fibonacci(0), Fibonacci(1), Fibonacci(2), Fibonacci(12)), Set(0, 1, 144))))
F_{n} \sim \frac{{\varphi}^{n}}{\sqrt{5}}, \; n \to \infty
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
GoldenRatio | φ | The golden ratio (1.618...) |
Sqrt | z | Principal square root |
Infinity | ∞ | Positive infinity |
Entry(ID("0574c1"), Formula(AsymptoticTo(Fibonacci(n), Div(Pow(GoldenRatio, n), Sqrt(5)), n, Infinity)))
\lim_{n \to \infty} \frac{F_{n + 1}}{F_{n}} = \varphi
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimit | limn→af(n) | Limiting value of sequence |
Fibonacci | Fn | Fibonacci number |
Infinity | ∞ | Positive infinity |
GoldenRatio | φ | The golden ratio (1.618...) |
Entry(ID("fdfdcc"), Formula(Equal(SequenceLimit(Div(Fibonacci(Add(n, 1)), Fibonacci(n)), For(n, Infinity)), GoldenRatio)))
\lim_{n \to \infty} \frac{F_{n + m}}{F_{n}} = {\varphi}^{m} m \in \mathbb{Z}
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimit | limn→af(n) | Limiting value of sequence |
Fibonacci | Fn | Fibonacci number |
Infinity | ∞ | Positive infinity |
Pow | ab | Power |
GoldenRatio | φ | The golden ratio (1.618...) |
ZZ | Z | Integers |
Entry(ID("d56025"), Formula(Equal(SequenceLimit(Div(Fibonacci(Add(n, m)), Fibonacci(n)), For(n, Infinity)), Pow(GoldenRatio, m))), Variables(m), Assumptions(Element(m, ZZ)))
F_{n} < \frac{{\varphi}^{n} + 1}{\sqrt{5}} n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
GoldenRatio | φ | The golden ratio (1.618...) |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("f3aff5"), Formula(Less(Fibonacci(n), Div(Add(Pow(GoldenRatio, n), 1), Sqrt(5)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
F_{n} > \frac{{\varphi}^{n} - 1}{\sqrt{5}} n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
GoldenRatio | φ | The golden ratio (1.618...) |
Sqrt | z | Principal square root |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("9c53d7"), Formula(Greater(Fibonacci(n), Div(Sub(Pow(GoldenRatio, n), 1), Sqrt(5)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
F_{2 n} < F_{n + 1}^{2} < F_{2 n + 1} n \in \mathbb{Z}_{\ge 2}
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("412334"), Formula(Less(Fibonacci(Mul(2, n)), Pow(Fibonacci(Add(n, 1)), 2), Fibonacci(Add(Mul(2, n), 1)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(2))))
\sum_{n=0}^{\infty} \frac{1}{F_{2 n + 1} + 1} = \frac{\sqrt{5}}{2}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Fibonacci | Fn | Fibonacci number |
Infinity | ∞ | Positive infinity |
Sqrt | z | Principal square root |
Entry(ID("ae9d30"), Formula(Equal(Sum(Div(1, Add(Fibonacci(Add(Mul(2, n), 1)), 1)), For(n, 0, Infinity)), Div(Sqrt(5), 2))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))
\sum_{n=1}^{\infty} \frac{{\left(-1\right)}^{n + 1}}{F_{n} F_{n + 1}} = \frac{\sqrt{5} - 1}{2}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Fibonacci | Fn | Fibonacci number |
Infinity | ∞ | Positive infinity |
Sqrt | z | Principal square root |
Entry(ID("344963"), Formula(Equal(Sum(Div(Pow(-1, Add(n, 1)), Mul(Fibonacci(n), Fibonacci(Add(n, 1)))), For(n, 1, Infinity)), Div(Sub(Sqrt(5), 1), 2))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))
\sum_{n=0}^{\infty} \frac{1}{F_{2 n + 1}} = \frac{\sqrt{5}}{4} \theta_{2}^{2}\!\left(0, \tau\right)\; \text{ where } \tau = \frac{1}{\pi i} \log\!\left(\frac{3 - \sqrt{5}}{2}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Fibonacci | Fn | Fibonacci number |
Infinity | ∞ | Positive infinity |
Sqrt | z | Principal square root |
Pow | ab | Power |
JacobiTheta | θj(z,τ) | Jacobi theta function |
Pi | π | The constant pi (3.14...) |
ConstI | i | Imaginary unit |
Log | log(z) | Natural logarithm |
Entry(ID("da1873"), Formula(Equal(Sum(Div(1, Fibonacci(Add(Mul(2, n), 1))), For(n, 0, Infinity)), Where(Mul(Div(Sqrt(5), 4), Pow(JacobiTheta(2, 0, tau), 2)), Equal(tau, Mul(Div(1, Mul(Pi, ConstI)), Log(Div(Sub(3, Sqrt(5)), 2))))))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2}} = \frac{5}{24} \left(\theta_{2}^{4}\!\left(0, \tau\right) - \theta_{4}^{4}\!\left(0, \tau\right) + 1\right)\; \text{ where } \tau = \frac{1}{\pi i} \log\!\left(\frac{3 - \sqrt{5}}{2}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Pow | ab | Power |
Fibonacci | Fn | Fibonacci number |
Infinity | ∞ | Positive infinity |
JacobiTheta | θj(z,τ) | Jacobi theta function |
Pi | π | The constant pi (3.14...) |
ConstI | i | Imaginary unit |
Log | log(z) | Natural logarithm |
Sqrt | z | Principal square root |
Entry(ID("22b67a"), Formula(Equal(Sum(Div(1, Pow(Fibonacci(n), 2)), For(n, 1, Infinity)), Where(Mul(Div(5, 24), Add(Sub(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4)), 1)), Equal(tau, Mul(Div(1, Mul(Pi, ConstI)), Log(Div(Sub(3, Sqrt(5)), 2))))))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))
\sum_{n=0}^{\infty} \frac{1}{F_{{2}^{n}}} = \frac{7 - \sqrt{5}}{2}
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | ∑nf(n) | Sum |
Fibonacci | Fn | Fibonacci number |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
Sqrt | z | Principal square root |
Entry(ID("6d8bf0"), Formula(Equal(Sum(Div(1, Fibonacci(Pow(2, n))), For(n, 0, Infinity)), Div(Sub(7, Sqrt(5)), 2))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC