Fungrim home page

Fungrim entry: 90c290

Fn=2F1 ⁣(1n2,2n2,1n,4)F_{n} = \,{}_2F_1\!\left(\frac{1 - n}{2}, \frac{2 - n}{2}, 1 - n, -4\right)
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
F_{n} = \,{}_2F_1\!\left(\frac{1 - n}{2}, \frac{2 - n}{2}, 1 - n, -4\right)

n \in \mathbb{Z}_{\ge 1}
Fungrim symbol Notation Short description
FibonacciFnF_{n} Fibonacci number
Hypergeometric2F12F1 ⁣(a,b,c,z)\,{}_2F_1\!\left(a, b, c, z\right) Gauss hypergeometric function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(Fibonacci(n), Hypergeometric2F1(Div(Sub(1, n), 2), Div(Sub(2, n), 2), Sub(1, n), -4))),
    Assumptions(Element(n, ZZGreaterEqual(1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC